Andrei Smilga

NEW CLASSES OF DYNAMIC SYSTEMS WITH BENIGN GHOSTS

Dubna Fest
October 13, 2021

INTRODUCTION

- Definition: Ghost system is a system where the spectrum of the quantum Hamiltonian does not have a ground state.
- Ghosts are inherent for higher-derivative systems.
- M. Ostrogradsky (1850) developped a general method to construct classical Hamiltonians for HD systems.
- A. Pais and G.E. Uhlenbeck (1950) observed the presence of ghosts there.

GENERAL THEOREMS

Theorem 1: [R. Woodard, 2015] The classical energy of a nondegenerate higher-derivative system can acquire an arbitrary positive or negative value.

Theorem 2: [M. Raidal and H. Veermae, 2017] The spectrum of a quantum Hamiltonian of a higherderivative system is not bounded neither from below, nor from above.

Example

$$
\begin{equation*}
H=\frac{\hat{P}_{1}^{2}+\omega_{1}^{2} X_{1}^{2}}{2}-\frac{\hat{P}_{2}^{2}+\omega_{2}^{2} X_{2}^{2}}{2} \tag{1}
\end{equation*}
$$

The spectrum is

$$
E_{n m}=\left(n+\frac{1}{2}\right) \omega_{1}-\left(m+\frac{1}{2}\right) \omega_{2}
$$

with positive integer n, m.

- All states are normalizable ("pure point"). Infinite degeneracy if ω_{1} / ω_{2} is rational. Everywhere dense if ω_{1} / ω_{2} is irrational.

UNUSUAL BUT NOT SICK!

PAIS-UHLENBECK OSCILLATOR:

$$
L=\frac{1}{2}\left[\ddot{x}^{2}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \dot{x}^{2}+\omega_{1}^{2} \omega_{2}^{2} x^{2}\right]
$$

- If $\omega_{1} \neq \omega_{2}$, its Ostrogradsky Hamiltonian is reduced to (1) by a canonical transformation [P.D. Mannheim and A.Davidson, 2005].

INCLUDING INTERACTIONS: DANGER OF COLLAPSE

- This happens for

$$
L=\frac{1}{2}\left[\ddot{x}^{2}-\left(\omega_{1}^{2}+\omega_{2}^{2}\right) \dot{x}^{2}+\omega_{1}^{2} \omega_{2}^{2} x^{2}-\lambda x^{4}\right]
$$

Falling to the center

Consider

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}-\frac{\kappa}{r^{2}} \tag{2}
\end{equation*}
$$

Collapsing classical trajectories

Figure 1: Falling on the center for the Hamiltonian (2) with $m=1$ and $\kappa=.05$. The energy is slightly negative. The particles with positive energies escape to infinity.

- If $m \kappa>1 / 8$, the quantum spectrum is not bounded from below.
- Schrödinger problem is not well defined.

If one smoothens the singularity,

$$
\begin{aligned}
& V(r)=-\frac{\kappa}{r^{2}}, \quad r>a \\
& V(r)=-\frac{\kappa}{a^{2}}, \quad r \leq a
\end{aligned}
$$

the spectrum is bounded, but depends on a.

- Violation of unitarity (probability "leaks" into the singularity). Ghosts are malignant here !

AN OBSERVATION:

- If quantum theory is sick, so is its classical counterpart. If classical theory is benign, so is its quantum counterpart.

THERE ARE INTERACTING SYSTEMS WITH BENIGN GHOSTS!

Example

[D. Robert and A.S., 2006]

$$
H=p P-D V^{\prime}(x)
$$

- This Hamiltonian is not positive definite
- 4-dimensional phase space $(p, x),(P, D)$.
- Two integrals of motion: H and

$$
N=\frac{P^{2}}{2}+V(x)
$$

- Exactly solvable.
- Take

$$
V=\frac{\omega^{2} x^{2}}{2}+\frac{\lambda x^{4}}{4}
$$

- The solutions to the classical equations of motion are expressed via elliptic functions.

- Linear growth for $D(t) ; x(t)$ is bounded. No blow up.
- Other benign ghost systems:
[M. Pavšič, 2013; I.B. Ilhan and A.Kovner, 2013;
C. Deffayet, S. Mukohyama and A. Vikman, 2021]

QUANTUM PROBLEM

is also exactly solvable.

Spectrum of the Hamiltonian $H=p P-D V^{\prime}(x)$.

Observation: INTEGRABILITY HELPS!

Example: Toda chain
[A.S., PLA, 389 (2021) 127104.]

$$
H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)+V_{12}+V_{23}+V_{31},
$$

where $V_{12}=e^{q_{1}-q_{2}}$, etc. Besides the energy, the system involves an obvious integral of motion $P=$ $p_{1}+p_{2}+p_{3}$, as well as the less obvious cubic invariant

$$
\begin{array}{r}
I=\frac{1}{3}\left(p_{1}^{3}+p_{2}^{3}+p_{3}^{3}\right)+ \\
p_{1}\left(V_{12}+V_{31}\right)+p_{2}\left(V_{12}+V_{23}\right)+p_{3}\left(V_{23}+V_{31}\right) .
\end{array}
$$

- Finite motion and discrete quantum spectrum.

THE MAIN IDEA: Treat I as a Hamiltonian!

- The eigenstates of \hat{H} are also eigenstates of \hat{I}.
- The spectrum of \hat{I} involves positive and negative eigenvalues and is not bounded from below!

Classical trajectories

Figure 2: The dependence $p_{1}(t)$ for the equations of motion based on H and on I. The inital conditions are $q_{1}(0)=q_{2}(0)=q_{3}(0)=0, p_{1}(0)=1, p_{2}(0)=$ $p_{3}(0)=-.5$.

NEW RESULTS

[T. Damour and A. Smilga, in preparation.]
I. Variation of an ordinary system.

- Take

$$
\begin{equation*}
L_{0}=\frac{\dot{x}^{2}}{2}-V(x) \tag{3}
\end{equation*}
$$

- Trade x for $x+\epsilon D$, expand on ϵ and keep only the linear term.

We obtain the Lagrangian

$$
\begin{equation*}
L_{1}(x, D, \dot{x}, \dot{D})=\dot{x} \dot{D}-V^{\prime}(x) D \tag{4}
\end{equation*}
$$

with 2 pairs of dynamical variables.

- The classical energy of the system (3), N = $\dot{x}^{2} / 2+V(x)$, is still conserved. The Hamiltonian for (4), $H=p P+D V^{\prime}(x)$, gives the second integral of motion.
- The trajectory $x(t)$ is the same as for (3). The solution is

$$
x(t)=A_{0}(N) f\left[\Omega(N)\left(t-t_{0}\right)\right]
$$

with a periodic $f(u)$.

- The trajectory $D(t)$ is a variation of $x(t)$. The variation of N gives linear growth in time. No blow-up.

Generalization

- Take some benign $L_{0}\left(q^{i}, \dot{q}^{i}\right)$. Replace $q^{i} \rightarrow$ $q^{i}+\epsilon Q^{i}$, expand in ϵ and keep the linear term.
- The equations of motion for

$$
L_{1}\left(q^{i}, \dot{q}^{i} ; Q^{i}, \dot{Q}^{i}\right)=Q^{i} \frac{\partial L_{0}}{\partial q^{j}}+\dot{Q}^{i} \frac{\partial L_{0}}{\partial \dot{q}^{j}}
$$

may admit only the linear growth in time. No blow-up. Hence no collapse and no violation of unitarity in the quantum problem.

- The same for field theories. Take e.g. the Yang-Mills Lagrangian

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left\{F_{\mu \nu} F^{\mu \nu}\right\} \tag{5}
\end{equation*}
$$

set $A_{\mu} \rightarrow A_{\mu}+\epsilon B_{\mu}$, expand in ϵ and keep the linear terms. One obtains a nontrivial nonlinear field system with benign ghosts.
II. Geodesics on Lorentzian manifolds.

Example: De Sitter in 2 dimensions

$$
d s^{2}=\left(1+x^{2}\right) d t^{2}-\frac{d x^{2}}{1+x^{2}}
$$

- The curvature $R=2$ is constant.

Geodedic equations

$$
\begin{aligned}
\ddot{x}+x\left(x^{2}+1\right) \dot{t}^{2}-\frac{x}{x^{2}+1} \dot{x}^{2} & =0 \\
\ddot{t}+\frac{2 x}{x^{2}+1} \dot{t} \dot{x} & =0
\end{aligned}
$$

(with $\dot{x} \equiv d x / d \tau, \dot{t} \equiv d t / d \tau$, where τ is the proper time).

They follow from the ghost-ridden Hamiltonian

$$
H=\frac{p_{t}^{2}}{2\left(1+x^{2}\right)}-\frac{1+x^{2}}{2} p_{x}^{2}
$$

- When the energy is positive, the trajectories are bounded.
- When the energy is negative, $x(\tau)$ grows exponentially, $x(\tau) \propto \sinh (\sqrt{-2 E} \tau)$, but there is no blow-up!
- The geodesics on many other Lorentzian spaces have the same properties.
III. Modified KdV: a benign ghost-ridden field theory
- Consider the equation

$$
\begin{equation*}
u_{t}+12 u^{2} u_{x}+u_{x x x}=0 \tag{6}
\end{equation*}
$$

- Replacing $x \leftrightarrow t$, we obtain an equation

$$
\begin{equation*}
u_{x}+12 u^{2} u_{t}+u_{t t t}=0 \tag{7}
\end{equation*}
$$

including higher time derivatives. It follows from the Lagrangian

$$
\begin{equation*}
L=\frac{1}{2} \psi_{t t}^{2}-\psi_{t}^{4}-\frac{1}{2} \psi_{t} \psi_{x} \tag{8}
\end{equation*}
$$

where $u=\psi_{t}$. The corresponding Hamiltonian is not positive definite.

- We are interested in the classical temporal dynamics of the equation $(7) \equiv$ the dynamics of (6) in the spatial direction. The Cauchy problem for the latter consists in defining $u(t), u_{x}(t)$ and $u_{x x}(t)$ at some point $x=0$.
- There are many analytical arguments (though no rigourous proof) that this dynamics is benign, no blow-up (not so for the ordinary KdV !).

Numerical simulations

- Consider Eq. (6) on the band $0 \leq t \leq 2 \pi$ with the initial conditions: $u(t, 0)=\sin t, u_{x}(t, 0)=$ $u_{x x}(t, 0)=0$. Mathematica gives:

Figure 3: $u(t, x=2.9)$

Figure 4: $u_{x}(t, x=2.9)$

One sees a high-frequency numerical noise on the second plot. This noise does not allow to go much farther in x.

Related mechanical systems

- One can expand $u(t, x)$ in a Fourrier series in t, take a finite number of modes and obtain out of (8) a mechanical Lagrangian with a finite number of degrees of freedom. The simplest discretized version of (8) reads

$$
L=\frac{1}{2}(\psi-\chi)\left(\psi_{x}+\chi_{x}\right)+\frac{1}{2} \psi_{x x}^{2}+\frac{1}{2} \chi_{x x}^{2}-\psi_{x}^{4}-\chi_{x}^{4}
$$

It is higher-derivative involving only two dynamic variables $\psi(x)$ and $\chi(x)$, with x playing the role of time. We simulated the evolution of this system up to $x=10000$ and have not found any blow-up.

THANK YOU FOR ATTENTION!

SPECULATIONS AND DREAMS

PROBLEMS IN QUANTUM (AND CLASSICAL) GRAVITY:

- Nonrenormalizability
- Non-causality. Closed time loops. Paradoxes.
TOE = strings?
- No fundamental quantum string theory
- No phenomenological successes.

An alternative (dream) solution: [A.S., 2005]
Our Universe as a soap film in a flat higher dimensional bulk. The TOE is a field theory in this bulk. Gravity etc is an effective theory living on the film, like

$$
H_{\text {soap }}=\sigma \mathcal{A}=\sigma \int d^{2} x \sqrt{g}
$$

TRY

$$
S=-\frac{1}{2 h^{2}} \int \operatorname{Tr}\left\{F_{M N} F_{M N}\right\} d^{6} x
$$

in $D=6, M, N=0,1,2,3,4,5$.

- Dimensionful coupling constant, nonrenormalizable

A SECOND TRY

$\mathcal{L}^{D=6}=\alpha \operatorname{Tr}\left\{F_{\mu \nu} \square F_{\mu \nu}\right\}+\beta \operatorname{Tr}\left\{F_{\mu \nu} F_{\nu \alpha} F_{\alpha \mu}\right\}$

- α, β are dimensionless, renormalizability
- Includes higher derivatives. GHOSTS appear. They are malignant :(

SWEET DREAM:

A multidimensional $(D>4)$ higher-derivative theory with benign ghosts exists, and it is the TOE.

