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∫

ddk

(k2)λ1 [(q − k)2]λ2

= πd/2 Γ(2− ǫ− λ1)Γ(2− ǫ− λ2)

Γ(λ1)Γ(λ2)Γ(4− λ1 − λ2 − 2ǫ)

Γ(λ1 + λ2 + ǫ− 2)

(q2)λ1+λ2+ǫ−2

≡ πd/2 G(λ1, λ2)

(q2)λ1+λ2+ǫ−2

λ2

λ1

= πd/2G(λ1, λ2)×
λ1 + λ2 − d/2

Recursively one-loop integrals: they can be evaluated at
general d by successfully applying this one-loop formula.
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2 loops

2

1

4

3

5

FΓ =

∫ ∫

1
∏

Dai
i

ddk1d
dk2

where D1 = k2
1, D1 = (p− k1)

2, D3 = k2
2,

D4 = (p− k2)
2, D5 = (k1 − k2)

2.
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IBP

Integration by parts [K.G. Chetyrkin & F.V. Tkachov’81]!!!
Let

F (a1, a2, ..., aN ) =

∫

. . .

∫

1
∏

Dai
i

ddk1 . . . d
dkh

be a family of h-loop Feynman integrals and Di are
denominators of propagators which are quadratic or linear wrt
loop momenta kj and external momenta pr.

For, example, Di can be k2
1 −m2

1, (p1 − k2)
2 −m2

2, etc.

IBP relations: insert ∂
∂ka

· kb or
∂

∂ka
· pr

into the integrand of the general integral and set the resulting
expression to zero.
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∫

. . .

∫
(

∂

∂ka
· kb

1
∏

Dai
i

)

ddk1 . . . d
dkh = 0 ,

∫

. . .

∫
(

∂

∂ka
· pr

1
∏

Dai
i

)

ddk1 . . . d
dkh = 0

Express the results of the differentiation in terms of Di to
obtain a system of difference equations of the integrals
considered as functions of integer variables ai, with operators
of shifting indices ai and multiplication by indices similar to
creation and annihilation operators.
Solve these equations.
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Any integral of the given family is then expressed as a linear
combination of some basic (master) integrals.

Theorem [A. Smirnov & A. Petukhov’10]
The number of master integrals is finite

The whole problem of evaluation→

constructing a reduction procedure

evaluating master integrals
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Public codes to solve IBP relations:

AIR [C. Anastasiou & A. Lazopoulos]

FIRE [A. Smirnov]

REDUZE [C. Studerus & A. von Manteuffel]

LiteRed [R.N. Lee]

KIRA [P. Maierhöfer, J. Usovitsch, P. Uwer]
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Master integrals in 2 loops:
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3 loops

Manual solution [K.G. Chetyrkin & F.V. Tkachov’81]
Master integrals
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MINCER: an implementation of the manual solution in FORM

[S.G. Gorishny, S.A. Larin, L.R. Surguladze &
F.V. Tkachov’89]
[S.A. Larin, F.V. Tkachov & J. Vermaseren’91]
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massless Feynman integral corresponding to a graph Γ follows
from power counting:

FΓ(p; d) =
(

πd/2
)h

CΓ(ε)(p
2)ω−hε ,

where ω = 2h−
∑

i ai.



Evaluating five-loop propagators

Glue-and-Cut

The dependence on the external momentum of a propagator
massless Feynman integral corresponding to a graph Γ follows
from power counting:

FΓ(p; d) =
(

πd/2
)h

CΓ(ε)(p
2)ω−hε ,

where ω = 2h−
∑

i ai.

Gluing by lines. Let us suppose that UV- and IR-convergent
graphs, Γ1 and Γ2, have ω1 = ω2 = −1 and that the graphs
obtained by connecting the two external vertices by additional
lines are the same.



Evaluating five-loop propagators

Glue-and-Cut

The dependence on the external momentum of a propagator
massless Feynman integral corresponding to a graph Γ follows
from power counting:

FΓ(p; d) =
(

πd/2
)h

CΓ(ε)(p
2)ω−hε ,

where ω = 2h−
∑

i ai.

Gluing by lines. Let us suppose that UV- and IR-convergent
graphs, Γ1 and Γ2, have ω1 = ω2 = −1 and that the graphs
obtained by connecting the two external vertices by additional
lines are the same.

Then CΓ1(0) = CΓ2(0).
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At ε = 0, the first two diagrams are equal to 20ζ(5).
They can be obtained by cutting a line in the third vacuum
diagram.

Glue-and-Cut strategy to evaluate master integrals.
[P.A. Baikov & K.G. Chetyrkin’10]

Write down gluing relations for all pairs of propagator
integrals which satisfy the conditions of gluing by lines,
i.e. which after gluing are transformed into the same
vacuum integral with degree of divergence equal to zero.

Reduce all the integrals involved to master integrals.

Solve resulting linear equations for the coefficients of the
master integrals in their ε-expansions.
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4 loops

M61, ε1 M62, ε0 M63, ε0 M51, ε1

M41, ε1 M42, ε1 M44, ε0 M45, ε1

M34, ε3 M35, ε2 M36, ε1 M52, ε1

M43, ε1 M32, ε3 M33, ε3 M21, ε4

M22, ε4 M26, ε4 M27, ε4 M23, ε4

M24, ε4 M25, ε4 M11, ε5 M12, ε5

M13, ε5 M14, ε5 M01, ε6 M31, ε3
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[P.A. Baikov & K.G. Chetyrkin’10]: analytic evaluation of all
the four-loop propagators master integrals in an ε-expansion
up to transcendental weight 7. (The weight of ζ(i) equals i.)
Information only about recursively one-loop integrals was used.
For example,

M61

= −
10ζ5
ε

+ 50ζ5 − 10 ζ23 − 25ζ6

+ ε

(

90ζ5 + 50 ζ23 + 125ζ6 − 30 ζ3 ζ4 +
19 ζ7
2

)

+ O(ε2)

with ζi = ζ(i).

[R. Lee, A. Smirnov and V. Smirnov’11]: evaluation up to
transcendental weight 12.
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5 loops

[P.A. Baikov & K.G. Chetyrkin’10]:
The five-loop problem can also be solved. The identities
stemming from the GaC symmetry will express all five-loop
MI’s in terms of significantly smaller set of p-integrals. One
could certainly expect that:

in general the five-loop master p-integrals will contain
irrational terms of weight not higher than 9;

the ‘small set’ of five-loop integrals will include ones
primitive as well as those expressible in terms of the
generalized F -function.
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All the five-loop propagators integrals can be described by 46
families of integrals associated with graphs with triple vertices.

Fa1,a2,...,a20 =

∫

. . .

∫

1
∏20

i=1D
ai
i

ddl1 . . . d
dl5

For each family, first 14 indices can be positive and the last 6
indices are always non-positive.

For example, for family 46, {D1, D2, . . . , D20} = {l21, (l1 − p)2,
l22, (l2 + p)2, l23, l

2
4, (l3 + l4)

2, l25, (l1 + l3 + l4 + l5 − p)2,
(l1 + l3 + l4 − p)2, (l2 − l3 − l5 + p)2, (l1 − l2 + l3 + l4 + l5 −
p)2, (l1+ l4)

2, (l2− l3+p)2, l1 · l3, l2 · l3, l2 · l4, l2 · l5, l3 · l5, l4 · l5}
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IBP reduction with FIRE [A. Smirnov]
There are 281 master integrals.

To increase the feasibility of IBP reduction we used the code
[A.V. Smirnov& V.A. Smirnov’20] to get rid of bad
denominators.

A denominator is good if it can be represented as a product of
polynomials of kinematical invariants and masses independent
of d and linear terms of the form ad+ b with rational numbers
a and b. A denominator is called bad if it is not good.

If the code doesn’t produce a good basis (i.e. with IBP
reductions with good denominators) then it is reasonable to
look for a hidden relation between current master integrals.
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We have found the following additional relation

F1,1,1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0

=
1

3d− 11

[

4(2d− 7)F0,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0

−5(d− 5)F1,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0

+(d− 5)F0,1,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0

]

+ . . .
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Applying the Glue-and-Cut strategy.

Construct six-loop vacuum graphs with ω = 0 without
subdivergences. We did this automatically and
constructed 469 vacuum integrals with the numbers of
lines from 12 to 15 and numerators which are monomials.

Write down gluing relations for all pairs of 5-loop
propagator integrals which correspond to graphs obtained
after cutting a line in these vacuum graphs

For example,

Reduce all the integrals involved to master integrals using
FIRE.
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Take into account that poles in ε in 5-loop propagator
propagator integrals can be not higher than 1/ε5.

Take into account that finite integrals have no poles.

Solve resulting linear equations for coefficients in
ε-expansions of the master integrals up to weight 9.

We have obtained results for all the terms of the ε-expansion
of all the 281 master integrals up to weight 9.
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To fix the solution, we took into account information about
the ε-expansion of 21 recursively one-loop master integrals,
e.g.

In addition, we needed the ε-expansion of only one factorizable
master integral.
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=
6ζ(5)

ε2
+

(

174ζ(3)2

5
− 29ζ(5)−

42ζ(7)

5
+

π6

63

)

1

ε

− 210ζ(5)−
29π6

378
−

1261ζ(3)2

5
−

1919ζ(7)

10
+

29π4ζ(3)

25

− 204ζ(3)ζ(5) +
2887π8

78750
−

3888

25
ζ(3, 5)

+
614ζ(9)

3
+ 48ζ(3)3 +O(ε) ,
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An example of our results

=
6ζ(5)

ε2
+

(

174ζ(3)2

5
− 29ζ(5)−

42ζ(7)

5
+

π6

63

)

1

ε

− 210ζ(5)−
29π6

378
−

1261ζ(3)2

5
−

1919ζ(7)

10
+

29π4ζ(3)

25

− 204ζ(3)ζ(5) +
2887π8

78750
−

3888

25
ζ(3, 5)

+
614ζ(9)

3
+ 48ζ(3)3 +O(ε) ,

ζ(m1, . . . , mk) =
∞
∑

i1=1

i1−1
∑

1

· · ·

ik−1−1
∑

1

k
∏

j=1

sgn(mj)
ij

i
|mj |
j

.



Evaluating five-loop propagators

Conclusion

We have evaluated all the five-loop propagator master
integrals in an ε-expansion up to weight 9.



Evaluating five-loop propagators

Conclusion

We have evaluated all the five-loop propagator master
integrals in an ε-expansion up to weight 9.

All the results are expressed in terms of MZV.



Evaluating five-loop propagators

Conclusion

We have evaluated all the five-loop propagator master
integrals in an ε-expansion up to weight 9.

All the results are expressed in terms of MZV.

Standard applications: evaluating β-functions or
anomalous dimensions 5 loops can be feasible.



Evaluating five-loop propagators

Conclusion

We have evaluated all the five-loop propagator master
integrals in an ε-expansion up to weight 9.

All the results are expressed in terms of MZV.

Standard applications: evaluating β-functions or
anomalous dimensions 5 loops can be feasible.

The bottleneck is IBP reduction.


