Evaluating five-loop propagators

Vladimir A. Smirnov

Skobeltsyn Institute of Nuclear Physics of Moscow State University
Advances in Quantum Field Theory, 2021, October 11-14
in collaboration with Alessandro Georgoudis, Vasco Gonçalves, Erik Panzer, Raul Pereira and Alexander Smirnov [JHEP,2021].
in collaboration with Alessandro Georgoudis, Vasco Gonçalves, Erik Panzer, Raul Pereira and Alexander Smirnov [JHEP,2021].

Analytic evaluation of massless propagator Feynman integrals, $F_{\Gamma}\left(p^{2} ; d\right)$ in dimensional regularization, $d=4-2 \varepsilon$, associated with five-loop graphs Γ.
in collaboration with Alessandro Georgoudis, Vasco Gonçalves, Erik Panzer, Raul Pereira and Alexander Smirnov [JHEP,2021].

Analytic evaluation of massless propagator Feynman integrals, $F_{\Gamma}\left(p^{2} ; d\right)$ in dimensional regularization, $d=4-2 \varepsilon$, associated with five-loop graphs Γ.
For example,

■ 1 loop

- 1 loop

■ 2 loops

■ 1 loop
■ 2 loops
■ IBP [K.G. Chetyrkin \& F.V. Tkachov'81]

■ 1 loop
■ 2 loops
■ IBP [K.G. Chetyrkin \& F.V. Tkachov'81]
■ 3 loops [K.G. Chetyrkin \& F.V. Tkachov'81]

- 1 loop

■ 2 loops
■ IBP [K.G. Chetyrkin \& F.V. Tkachov'81]
■ 3 loops [K.G. Chetyrkin \& F.V. Tkachov'81]
■ Glue-and-Cut

- 1 loop

■ 2 loops
■ IBP [K.G. Chetyrkin \& F.V. Tkachov'81]

- 3 loops [K.G. Chetyrkin \& F.V. Tkachov'81]
- Glue-and-Cut
- 4 loops [P.A. Baikov \& K.G. Chetyrkin'10]
- 1 loop

■ 2 loops
■ IBP [K.G. Chetyrkin \& F.V. Tkachov'81]

- 3 loops [K.G. Chetyrkin \& F.V. Tkachov'81]

■ Glue-and-Cut

- 4 loops [P.A. Baikov \& K.G. Chetyrkin'10]
- 5 loops
- 1 loop

■ 2 loops
■ IBP [K.G. Chetyrkin \& F.V. Tkachov'81]

- 3 loops [K.G. Chetyrkin \& F.V. Tkachov'81]

■ Glue-and-Cut

- 4 loops [P.A. Baikov \& K.G. Chetyrkin'10]

■ 5 loops

- Conclusion

1 loop

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{\lambda_{1}}\left[(q-k)^{2}\right]^{\lambda_{2}}} \\
= & \pi^{d / 2} \frac{\Gamma\left(2-\epsilon-\lambda_{1}\right) \Gamma\left(2-\epsilon-\lambda_{2}\right)}{\Gamma\left(\lambda_{1}\right) \Gamma\left(\lambda_{2}\right) \Gamma\left(4-\lambda_{1}-\lambda_{2}-2 \epsilon\right)} \frac{\Gamma\left(\lambda_{1}+\lambda_{2}+\epsilon-2\right)}{\left(q^{2}\right)^{\lambda_{1}+\lambda_{2}+\epsilon-2}} \\
\equiv & \pi^{d / 2} \frac{G\left(\lambda_{1}, \lambda_{2}\right)}{\left(q^{2}\right)^{\lambda_{1}+\lambda_{2}+\epsilon-2}}
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{\lambda_{1}}\left[(q-k)^{2}\right]^{\lambda_{2}}} \\
= & \pi^{d / 2} \frac{\Gamma\left(2-\epsilon-\lambda_{1}\right) \Gamma\left(2-\epsilon-\lambda_{2}\right)}{\Gamma\left(\lambda_{1}\right) \Gamma\left(\lambda_{2}\right) \Gamma\left(4-\lambda_{1}-\lambda_{2}-2 \epsilon\right)} \frac{\Gamma\left(\lambda_{1}+\lambda_{2}+\epsilon-2\right)}{\left(q^{2}\right)^{\lambda_{1}+\lambda_{2}+\epsilon-2}} \\
\equiv & \pi^{d / 2} \frac{G\left(\lambda_{1}, \lambda_{2}\right)}{\left(q^{2}\right)^{\lambda_{1}+\lambda_{2}+\epsilon-2}}
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{d} k}{\left(k^{2}\right)^{\lambda_{1}}\left[(q-k)^{2}\right]^{\lambda_{2}}} \\
= & \pi^{d / 2} \frac{\Gamma\left(2-\epsilon-\lambda_{1}\right) \Gamma\left(2-\epsilon-\lambda_{2}\right)}{\Gamma\left(\lambda_{1}\right) \Gamma\left(\lambda_{2}\right) \Gamma\left(4-\lambda_{1}-\lambda_{2}-2 \epsilon\right)} \frac{\Gamma\left(\lambda_{1}+\lambda_{2}+\epsilon-2\right)}{\left(q^{2}\right)^{\lambda_{1}+\lambda_{2}+\epsilon-2}} \\
\equiv & \pi^{d / 2} \frac{G\left(\lambda_{1}, \lambda_{2}\right)}{\left(q^{2}\right)^{\lambda_{1}+\lambda_{2}+\epsilon-2}}
\end{aligned}
$$

Recursively one-loop integrals: they can be evaluated at general d by successfully applying this one-loop formula.

2 loops

$$
F_{\Gamma}=\iint \frac{1}{\prod D_{i}^{a_{i}}} \mathrm{~d}^{d} k_{1} \mathrm{~d}^{d} k_{2}
$$

where $D_{1}=k_{1}^{2}, D_{1}=\left(p-k_{1}\right)^{2}, D_{3}=k_{2}^{2}$,

$$
D_{4}=\left(p-k_{2}\right)^{2}, D_{5}=\left(k_{1}-k_{2}\right)^{2} .
$$

IBP

Integration by parts [K.G. Chetyrkin \& F.V. Tkachov'81]!!!

IBP

Integration by parts [K.G. Chetyrkin \& F.V. Tkachov'81]!!! Let

$$
F\left(a_{1}, a_{2}, \ldots, a_{N}\right)=\int \ldots \int \frac{1}{\prod D_{i}^{a_{i}}} \mathrm{~d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}
$$

be a family of h-loop Feynman integrals and D_{i} are denominators of propagators which are quadratic or linear wrt loop momenta k_{j} and external momenta p_{r}.

IBP

Integration by parts [K.G. Chetyrkin \& F.V. Tkachov'81]!!! Let

$$
F\left(a_{1}, a_{2}, \ldots, a_{N}\right)=\int \ldots \int \frac{1}{\prod D_{i}^{a_{i}}} \mathrm{~d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}
$$

be a family of h-loop Feynman integrals and D_{i} are denominators of propagators which are quadratic or linear wrt loop momenta k_{j} and external momenta p_{r}.
For, example, D_{i} can be $k_{1}^{2}-m_{1}^{2},\left(p_{1}-k_{2}\right)^{2}-m_{2}^{2}$, etc.

IBP

Integration by parts [K.G. Chetyrkin \& F.V. Tkachov'81]!!! Let

$$
F\left(a_{1}, a_{2}, \ldots, a_{N}\right)=\int \ldots \int \frac{1}{\prod D_{i}^{a_{i}}} \mathrm{~d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}
$$

be a family of h-loop Feynman integrals and D_{i} are denominators of propagators which are quadratic or linear wrt loop momenta k_{j} and external momenta p_{r}.
For, example, D_{i} can be $k_{1}^{2}-m_{1}^{2},\left(p_{1}-k_{2}\right)^{2}-m_{2}^{2}$, etc.
IBP relations: insert $\frac{\partial}{\partial k_{a}} \cdot k_{b}$ or $\frac{\partial}{\partial k_{a}} \cdot p_{r}$ into the integrand of the general integral and set the resulting expression to zero.

$$
\begin{aligned}
& \int \ldots \int\left(\frac{\partial}{\partial k_{a}} \cdot k_{b} \frac{1}{\Pi D_{i}^{a_{i}}}\right) \mathrm{d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}=0, \\
& \int \ldots \int\left(\frac{\partial}{\partial k_{a}} \cdot p_{r} \frac{1}{\prod_{i}^{a_{i}}}\right) \mathrm{d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}=0
\end{aligned}
$$

$$
\begin{aligned}
& \int \ldots \int\left(\frac{\partial}{\partial k_{a}} \cdot k_{b} \frac{1}{\prod D_{i}^{a_{i}}}\right) \mathrm{d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}=0, \\
& \int \ldots \int\left(\frac{\partial}{\partial k_{a}} \cdot p_{r} \frac{1}{\prod D_{i}^{a_{i}}}\right) \mathrm{d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}=0
\end{aligned}
$$

Express the results of the differentiation in terms of D_{i} to obtain a system of difference equations of the integrals considered as functions of integer variables a_{i}, with operators of shifting indices a_{i} and multiplication by indices similar to creation and annihilation operators.

$$
\begin{aligned}
& \int \ldots \int\left(\frac{\partial}{\partial k_{a}} \cdot k_{b} \frac{1}{\prod D_{i}^{a_{i}}}\right) \mathrm{d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}=0, \\
& \int \ldots \int\left(\frac{\partial}{\partial k_{a}} \cdot p_{r} \frac{1}{\prod D_{i}^{a_{i}}}\right) \mathrm{d}^{d} k_{1} \ldots \mathrm{~d}^{d} k_{h}=0
\end{aligned}
$$

Express the results of the differentiation in terms of D_{i} to obtain a system of difference equations of the integrals considered as functions of integer variables a_{i}, with operators of shifting indices a_{i} and multiplication by indices similar to creation and annihilation operators.
Solve these equations.

Any integral of the given family is then expressed as a linear combination of some basic (master) integrals.

Any integral of the given family is then expressed as a linear combination of some basic (master) integrals.

Theorem [A. Smirnov \& A. Petukhov'10]
The number of master integrals is finite

Any integral of the given family is then expressed as a linear combination of some basic (master) integrals.

Theorem [A. Smirnov \& A. Petukhov'10]
The number of master integrals is finite
The whole problem of evaluation \rightarrow

- constructing a reduction procedure
- evaluating master integrals

Public codes to solve IBP relations:
$■$ AIR [C. Anastasiou \& A. Lazopoulos]

Public codes to solve IBP relations:

- AIR [C. Anastasiou \& A. Lazopoulos]
- FIRE [A. Smirnov]

Public codes to solve IBP relations:

- AIR [C. Anastasiou \& A. Lazopoulos]
- FIRE [A. Smirnov]

■ REDUZE [C. Studerus \& A. von Manteuffel]

Public codes to solve IBP relations:

- AIR [C. Anastasiou \& A. Lazopoulos]
- FIRE [A. Smirnov]

■ REDUZE [C. Studerus \& A. von Manteuffel]
■ LiteRed [R.N. Lee]

Public codes to solve IBP relations:
\square AIR [C. Anastasiou \& A. Lazopoulos]

- FIRE [A. Smirnov]
- REDUZE [C. Studerus \& A. von Manteuffel]

■ LiteRed [R.N. Lee]
■ KIRA [P. Maierhöfer, J. Usovitsch, P. Uwer]

2 loops

Master integrals in 2 loops:

3 loops

3 loops

Manual solution [K.G. Chetyrkin \& F.V. Tkachov'81]

3 loops

Manual solution [K.G. Chetyrkin \& F.V. Tkachov'81]
Master integrals

MINCER: an implementation of the manual solution in FORM [S.G. Gorishny, S.A. Larin, L.R. Surguladze \&
F.V. Tkachov'89]
[S.A. Larin, F.V. Tkachov \& J. Vermaseren'91]

Glue-and-Cut

The dependence on the external momentum of a propagator massless Feynman integral corresponding to a graph Γ follows from power counting:

$$
F_{\Gamma}(p ; d)=\left(\pi^{d / 2}\right)^{h} C_{\Gamma}(\varepsilon)\left(p^{2}\right)^{\omega-h \varepsilon},
$$

where $\omega=2 h-\sum_{i} a_{i}$.

Glue-and-Cut

The dependence on the external momentum of a propagator massless Feynman integral corresponding to a graph 「 follows from power counting:

$$
F_{\Gamma}(p ; d)=\left(\pi^{d / 2}\right)^{h} C_{\Gamma}(\varepsilon)\left(p^{2}\right)^{\omega-h \varepsilon}
$$

where $\omega=2 h-\sum_{i} a_{i}$.
Gluing by lines. Let us suppose that UV- and IR-convergent graphs, Γ_{1} and Γ_{2}, have $\omega_{1}=\omega_{2}=-1$ and that the graphs obtained by connecting the two external vertices by additional lines are the same.

Glue-and-Cut

The dependence on the external momentum of a propagator massless Feynman integral corresponding to a graph 「 follows from power counting:

$$
F_{\Gamma}(p ; d)=\left(\pi^{d / 2}\right)^{h} C_{\Gamma}(\varepsilon)\left(p^{2}\right)^{\omega-h \varepsilon}
$$

where $\omega=2 h-\sum_{i} a_{i}$.
Gluing by lines. Let us suppose that UV- and IR-convergent graphs, Γ_{1} and Γ_{2}, have $\omega_{1}=\omega_{2}=-1$ and that the graphs obtained by connecting the two external vertices by additional lines are the same.

Then $C_{\Gamma_{1}}(0)=C_{\Gamma_{2}}(0)$.

At $\varepsilon=0$, the first two diagrams are equal to $20 \zeta(5)$.

At $\varepsilon=0$, the first two diagrams are equal to $20 \zeta(5)$.
They can be obtained by cutting a line in the third vacuum diagram.

At $\varepsilon=0$, the first two diagrams are equal to $20 \zeta(5)$.
They can be obtained by cutting a line in the third vacuum diagram.

Glue-and-Cut strategy to evaluate master integrals.
[P.A. Baikov \& K.G. Chetyrkin'10]

At $\varepsilon=0$, the first two diagrams are equal to 20 (5).
They can be obtained by cutting a line in the third vacuum diagram.

Glue-and-Cut strategy to evaluate master integrals.
[P.A. Baikov \& K.G. Chetyrkin'10]

- Write down gluing relations for all pairs of propagator integrals which satisfy the conditions of gluing by lines, i.e. which after gluing are transformed into the same vacuum integral with degree of divergence equal to zero.

At $\varepsilon=0$, the first two diagrams are equal to 20 (5).
They can be obtained by cutting a line in the third vacuum diagram.

Glue-and-Cut strategy to evaluate master integrals.
[P.A. Baikov \& K.G. Chetyrkin'10]

- Write down gluing relations for all pairs of propagator integrals which satisfy the conditions of gluing by lines, i.e. which after gluing are transformed into the same vacuum integral with degree of divergence equal to zero.
■ Reduce all the integrals involved to master integrals.

At $\varepsilon=0$, the first two diagrams are equal to 20 (5).
They can be obtained by cutting a line in the third vacuum diagram.

Glue-and-Cut strategy to evaluate master integrals.
[P.A. Baikov \& K.G. Chetyrkin'10]
■ Write down gluing relations for all pairs of propagator integrals which satisfy the conditions of gluing by lines, i.e. which after gluing are transformed into the same vacuum integral with degree of divergence equal to zero.
■ Reduce all the integrals involved to master integrals.
■ Solve resulting linear equations for the coefficients of the master integrals in their ε-expansions.

4 loops

[P.A. Baikov \& K.G. Chetyrkin'10]: analytic evaluation of all the four-loop propagators master integrals in an ε-expansion up to transcendental weight 7. (The weight of $\zeta(i)$ equals i.)
[P.A. Baikov \& K.G. Chetyrkin'10]: analytic evaluation of all the four-loop propagators master integrals in an ε-expansion up to transcendental weight 7. (The weight of $\zeta(i)$ equals i.) Information only about recursively one-loop integrals was used.
[P.A. Baikov \& K.G. Chetyrkin'10]: analytic evaluation of all the four-loop propagators master integrals in an ε-expansion up to transcendental weight 7 . (The weight of $\zeta(i)$ equals i.) Information only about recursively one-loop integrals was used.
For example,

$$
\begin{aligned}
& -\square-=-\frac{10 \zeta_{5}}{\varepsilon}+50 \zeta_{5}-10 \zeta_{3}^{2}-25 \zeta_{6} \\
& +\varepsilon\left(90 \zeta_{5}+50 \zeta_{3}^{2}+125 \zeta_{6}-30 \zeta_{3} \zeta_{4}+\frac{19 \zeta_{7}}{2}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

with $\zeta_{i}=\zeta(i)$.
[P.A. Baikov \& K.G. Chetyrkin'10]: analytic evaluation of all the four-loop propagators master integrals in an ε-expansion up to transcendental weight 7 . (The weight of $\zeta(i)$ equals i.) Information only about recursively one-loop integrals was used. For example,

$$
\begin{aligned}
& -\square-=-\frac{10 \zeta_{5}}{\varepsilon}+50 \zeta_{5}-10 \zeta_{3}^{2}-25 \zeta_{6} \\
& +\varepsilon\left(90 \zeta_{5}+50 \zeta_{3}^{2}+125 \zeta_{6}-30 \zeta_{3} \zeta_{4}+\frac{19 \zeta_{7}}{2}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

with $\zeta_{i}=\zeta(i)$.
[R. Lee, A. Smirnov and V. Smirnov'11]: evaluation up to transcendental weight 12 .

5 loops

[P.A. Baikov \& K.G. Chetyrkin'10]:
The five-loop problem can also be solved. The identities stemming from the GaC symmetry will express all five-loop MI's in terms of significantly smaller set of p-integrals. One could certainly expect that:

- in general the five-loop master p-integrals will contain irrational terms of weight not higher than 9;
■ the 'small set' of five-loop integrals will include ones primitive as well as those expressible in terms of the generalized F-function.

All the five-loop propagators integrals can be described by 46 families of integrals associated with graphs with triple vertices.

$$
F_{a_{1}, a_{2}, \ldots, a_{20}}=\int \ldots \int \frac{1}{\prod_{i=1}^{20} D_{i}^{a_{i}}} \mathrm{~d}^{d} l_{1} \ldots \mathrm{~d}^{d} l_{5}
$$

All the five-loop propagators integrals can be described by 46 families of integrals associated with graphs with triple vertices.

$$
F_{a_{1}, a_{2}, \ldots, a_{20}}=\int \ldots \int \frac{1}{\prod_{i=1}^{20} D_{i}^{a_{i}}} \mathrm{~d}^{d} l_{1} \ldots \mathrm{~d}^{d} l_{5}
$$

For each family, first 14 indices can be positive and the last 6 indices are always non-positive.

All the five-loop propagators integrals can be described by 46 families of integrals associated with graphs with triple vertices.

$$
F_{a_{1}, a_{2}, \ldots, a_{20}}=\int \ldots \int \frac{1}{\prod_{i=1}^{20} D_{i}^{a_{i}}} \mathrm{~d}^{d} l_{1} \ldots \mathrm{~d}^{d} l_{5}
$$

For each family, first 14 indices can be positive and the last 6 indices are always non-positive.

All the five-loop propagators integrals can be described by 46 families of integrals associated with graphs with triple vertices.

$$
F_{a_{1}, a_{2}, \ldots, a_{20}}=\int \ldots \int \frac{1}{\prod_{i=1}^{20} D_{i}^{a_{i}}} \mathrm{~d}^{d} l_{1} \ldots \mathrm{~d}^{d} l_{5}
$$

For each family, first 14 indices can be positive and the last 6 indices are always non-positive.

For example, for family 46, $\left\{D_{1}, D_{2}, \ldots, D_{20}\right\}=\left\{l_{1}^{2},\left(l_{1}-p\right)^{2}\right.$, $l_{2}^{2},\left(l_{2}+p\right)^{2}, l_{3}^{2}, l_{4}^{2},\left(l_{3}+l_{4}\right)^{2}, l_{5}^{2},\left(l_{1}+l_{3}+l_{4}+l_{5}-p\right)^{2}$,
$\left(l_{1}+l_{3}+l_{4}-p\right)^{2},\left(l_{2}-l_{3}-l_{5}+p\right)^{2},\left(l_{1}-l_{2}+l_{3}+l_{4}+l_{5}-\right.$ $\left.p)^{2},\left(l_{1}+l_{4}\right)^{2},\left(l_{2}-l_{3}+p\right)^{2}, l_{1} \cdot l_{3}, l_{2} \cdot l_{3}, l_{2} \cdot l_{4}, l_{2} \cdot l_{5}, l_{3} \cdot l_{5}, l_{4} \cdot l_{5}\right\}$

IBP reduction with FIRE [A. Smirnov]

IBP reduction with FIRE [A. Smirnov]
There are 281 master integrals.

IBP reduction with FIRE [A. Smirnov]
There are 281 master integrals.
To increase the feasibility of IBP reduction we used the code [A.V. Smirnov\& V.A. Smirnov'20] to get rid of bad denominators.

IBP reduction with FIRE [A. Smirnov]
There are 281 master integrals.
To increase the feasibility of IBP reduction we used the code [A.V. Smirnov\& V.A. Smirnov'20] to get rid of bad denominators.

A denominator is good if it can be represented as a product of polynomials of kinematical invariants and masses independent of d and linear terms of the form $a d+b$ with rational numbers a and b.

IBP reduction with FIRE [A. Smirnov]
There are 281 master integrals.
To increase the feasibility of IBP reduction we used the code [A.V. Smirnov\& V.A. Smirnov'20] to get rid of bad denominators.

A denominator is good if it can be represented as a product of polynomials of kinematical invariants and masses independent of d and linear terms of the form $a d+b$ with rational numbers a and b. A denominator is called bad if it is not good.

IBP reduction with FIRE [A. Smirnov]
There are 281 master integrals.
To increase the feasibility of IBP reduction we used the code [A.V. Smirnov\& V.A. Smirnov'20] to get rid of bad denominators.

A denominator is good if it can be represented as a product of polynomials of kinematical invariants and masses independent of d and linear terms of the form $a d+b$ with rational numbers a and b. A denominator is called bad if it is not good.

If the code doesn't produce a good basis (i.e. with IBP reductions with good denominators) then it is reasonable to look for a hidden relation between current master integrals.

We have found the following additional relation

$$
\begin{aligned}
& F_{1,1,1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0} \\
& =\frac{1}{3 d-11}\left[4(2 d-7) F_{0,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0}\right. \\
& \\
& \quad \begin{aligned}
& 5(d-5) F_{1,1,0,1,1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0} \\
& \left.+(d-5) F_{0,1,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0}\right]+\ldots
\end{aligned}
\end{aligned}
$$

Applying the Glue-and-Cut strategy.

Applying the Glue-and-Cut strategy.
■ Construct six-loop vacuum graphs with $\omega=0$ without subdivergences.

Applying the Glue-and-Cut strategy.
■ Construct six-loop vacuum graphs with $\omega=0$ without subdivergences. We did this automatically and constructed 469 vacuum integrals with the numbers of lines from 12 to 15 and numerators which are monomials.

Applying the Glue-and-Cut strategy.
■ Construct six-loop vacuum graphs with $\omega=0$ without subdivergences. We did this automatically and constructed 469 vacuum integrals with the numbers of lines from 12 to 15 and numerators which are monomials.
■ Write down gluing relations for all pairs of 5-loop propagator integrals which correspond to graphs obtained after cutting a line in these vacuum graphs

Applying the Glue-and-Cut strategy.
■ Construct six-loop vacuum graphs with $\omega=0$ without subdivergences. We did this automatically and constructed 469 vacuum integrals with the numbers of lines from 12 to 15 and numerators which are monomials.

■ Write down gluing relations for all pairs of 5-loop propagator integrals which correspond to graphs obtained after cutting a line in these vacuum graphs
For example,

Applying the Glue-and-Cut strategy.
■ Construct six-loop vacuum graphs with $\omega=0$ without subdivergences. We did this automatically and constructed 469 vacuum integrals with the numbers of lines from 12 to 15 and numerators which are monomials.

■ Write down gluing relations for all pairs of 5-loop propagator integrals which correspond to graphs obtained after cutting a line in these vacuum graphs
For example,

■ Reduce all the integrals involved to master integrals using FIRE.

■ Take into account that poles in ε in 5-loop propagator propagator integrals can be not higher than $1 / \varepsilon^{5}$.

■ Take into account that poles in ε in 5-loop propagator propagator integrals can be not higher than $1 / \varepsilon^{5}$.
■ Take into account that finite integrals have no poles.

■ Take into account that poles in ε in 5-loop propagator propagator integrals can be not higher than $1 / \varepsilon^{5}$.
■ Take into account that finite integrals have no poles.
■ Solve resulting linear equations for coefficients in ε-expansions of the master integrals up to weight 9 .

■ Take into account that poles in ε in 5-loop propagator propagator integrals can be not higher than $1 / \varepsilon^{5}$.
■ Take into account that finite integrals have no poles.
■ Solve resulting linear equations for coefficients in ε-expansions of the master integrals up to weight 9 .
We have obtained results for all the terms of the ε-expansion of all the 281 master integrals up to weight 9 .

To fix the solution, we took into account information about the ε-expansion of 21 recursively one-loop master integrals, e.g.

To fix the solution, we took into account information about the ε-expansion of 21 recursively one-loop master integrals, e.g.

In addition, we needed the ε-expansion of only one factorizable master integral.

An example of our results

An example of our results

$$
=\frac{6 \zeta(5)}{\varepsilon^{2}}+\left(\frac{174 \zeta(3)^{2}}{5}-29 \zeta(5)-\frac{42 \zeta(7)}{5}+\frac{\pi^{6}}{63}\right) \frac{1}{\varepsilon}
$$

$$
-210 \zeta(5)-\frac{29 \pi^{6}}{378}-\frac{1261 \zeta(3)^{2}}{5}-\frac{1919 \zeta(7)}{10}+\frac{29 \pi^{4} \zeta(3)}{25}
$$

$$
-204 \zeta(3) \zeta(5)+\frac{2887 \pi^{8}}{78750}-\frac{3888}{25} \zeta(3,5)
$$

$$
+\frac{614 \zeta(9)}{3}+48 \zeta(3)^{3}+O(\varepsilon)
$$

An example of our results

$$
\begin{aligned}
& =\frac{6 \zeta(5)}{\varepsilon^{2}}+\left(\frac{174 \zeta(3)^{2}}{5}-29 \zeta(5)-\frac{42 \zeta(7)}{5}+\frac{\pi^{6}}{63}\right) \frac{1}{\varepsilon} \\
& -210 \zeta(5)-\frac{29 \pi^{6}}{378}-\frac{1261 \zeta(3)^{2}}{5}-\frac{1919 \zeta(7)}{10}+\frac{29 \pi^{4} \zeta(3)}{25} \\
& -204 \zeta(3) \zeta(5)+\frac{2887 \pi^{8}}{78750}-\frac{3888}{25} \zeta(3,5)
\end{aligned}
$$

$$
+\frac{614 \zeta(9)}{3}+48 \zeta(3)^{3}+O(\varepsilon)
$$

$$
\zeta\left(m_{1}, \ldots, m_{k}\right)=\sum_{i_{1}=1}^{\infty} \sum_{1}^{i_{1}-1} \cdots \sum_{1}^{i_{k-1}-1} \prod_{j=1}^{k} \frac{\operatorname{sgn}\left(m_{j}\right)^{i_{j}}}{i_{j}^{\left|m_{j}\right|}}
$$

Conclusion

■ We have evaluated all the five-loop propagator master integrals in an ε-expansion up to weight 9 .

Conclusion

■ We have evaluated all the five-loop propagator master integrals in an ε-expansion up to weight 9 .

- All the results are expressed in terms of MZV.

Conclusion

■ We have evaluated all the five-loop propagator master integrals in an ε-expansion up to weight 9 .
■ All the results are expressed in terms of MZV.
■ Standard applications: evaluating β-functions or anomalous dimensions 5 loops can be feasible.

Conclusion

■ We have evaluated all the five-loop propagator master integrals in an ε-expansion up to weight 9 .
■ All the results are expressed in terms of MZV.
■ Standard applications: evaluating β-functions or anomalous dimensions 5 loops can be feasible.
■ The bottleneck is IBP reduction.

