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Space-Time and Particles

Maximally symmetric space-times are characterized by their symmetry

group S.

Anti-de Sitter space: AdSd = O(d− 1,2)/O(d− 1,1), S = O(d− 1,2)

Minkowski contraction M4 = ISO(1,3)/SO(1,3), S = ISO(1,3)

Particles are associated with UIRs S-modules Wigner 1939

realized by spaces of solutions to S-symmetric field equations.

In the special case of massless fields energy weight E0 takes a spin-

dependent minimal value compatible with unitarity

E0 = E0(s⃗) , E0(s) = s+1 (d = 4)

In this case D(E0, s⃗) is indecomposable. The unitary module is its

quotient D′(E0, s⃗) = D(E0, s⃗)/D̃(Ẽ0, ˜⃗s)

In physics factorization is realized by gauge symmetry becoming one

of the fundamental physical principles.
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Fronsdal Fields

Fronsdal fields 1978

All m = 0 HS fields are gauge fields

ϕn1...ns is a rank-s symmetric tensor obeying ϕkk
m
mn5...ns = 0

Gauge transformation:

δϕn1...ns = ∂(n1εn2...ns) , εmmn3...ns−1 = 0

The challenge is to find a nonlinear deformation of Fronsdal field equa-

tions that respects a nonlinear deformation of the gauge symmetry

In 60-70th it was argued (Weinberg, Coleman-Mandula) that

HS symmetries cannot be realized in a nontrivial local field theory in

Minkowski space

Green light: AdS background with Λ ̸= 0 Fradkin, MV, 1987

In agreement with no-go statements the limit Λ → 0 is singular
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Non-Locality of HS Gauge Theory

HS interactions contain higher derivatives:

A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van Dam (1984)

HS symmetries Fradkin, MV 1986 are infinite dimensional

Infinite towers of spins imply infinite towers of derivatives.

How (non)local is HS gauge theory?

HS symmetries do not commute with space-time symmetries

[Tn , THS] = THS , [Tnm , THS] = THS

Riemann geometry is not appropriate for HS theory

The mildest possibility: each vertex with fields of definite spins is local.

All vertices we have found so far up to the quintic order are spin-local:

local in the spinor space.

The worst option: HS theory is essentially nonlocal Sleight, Taronna 2017
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Locality and Non-Locality

Equations of motion in perturbatively local field theory

E(∂, ϕ) = 0 , E(∂, ϕ) =
∞∑

k=0,l=1

a
n1...nk
a1...al ∂n1 . . . ∂nkϕ

a1 . . . ϕal

have a finite number of non-zero coefficients a
n1...nk
a1...al at any order l.

In non-local field theory this is not demanded.

Theories like HS theory involve infinite towers of fields: for instance

Fronsdal fields of all spins. Hence ai may take an infinite number of

values. It makes sense to distinguish between the following cases

local: finite number of derivatives at any order

spin-local: finite number of derivatives at any order for any finite subset

of fields

non-local: infinite number of derivatives at some order for some finite

subset of fields.
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Field Redefinitions

A local theory remains local under perturbatively local field redefinitions

δϕb =
∞∑

k=0,l=1

ab
n1...nk
a1...al ∂n1 . . . ∂nkϕ

a1 . . . ϕal

with a finite number of non-zero coefficients at any given order.

Application of a nonlocal field redefinition makes it seemingly non-local.

Given non-locally looking field theory, the essential question is whether

or not it admits a choice of variables making it local or spin-local.

One of the central problems in the HS gauge theory is to find an

appropriate setup making it (spin-)local.

In this talk it will be sketched how this problem is reformulated in terms

of star-product functions leading to the proper setup.
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Unfolded Dynamics

First-order form of differential equations

q̇i(t) = φi(q(t)) initial values: qi(t0)

Unfolded dynamics: multidimensional generalization

∂

∂t
→ d , qi(t) → WΩ(x) = dxn1 ∧ . . . ∧ dxnpWΩ

n1...np
(x)

dWΩ(x) = GΩ(W(x)) , d = dxn∂n MV 1988

GΩ(W ) : function of “supercoordinates” WΩ

GΩ(W ) =
∞∑

n=1

fΩΦ1...ΦnW
Φ1 ∧ . . . ∧WΦn

Covariant first-order differential equations

d > 1: Compatibility conditions

GΦ(W ) ∧
∂GΩ(W )

∂WΦ
≡ 0

L∞, A∞, Q-manifolds, etc 1988, 2005
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Space-Time as Vacuum Solution

Let ωα be a set of one-forms:

Gα(ω) = −fαβγω
β ∧ ωγ space-time

Consistency: Jacobi identity for a Lie algebra s

Unfolded equations: flatness condition

dωα + fαβγω
β ∧ ωγ = 0
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2× 2 = 4: Spinor Language for 4d Models

xn = σn
αβ̇

xαβ̇ n = 0,1,2,3, α = 1,2, α̇ = 1,2

xnxmηnm = det |xαα̇| = xαα̇xββ̇εαβεα̇β̇ sl2(C) ∼ o(3,1)

Sp(4) symmetric space-time AdS4 as vacuum geometry

Rαβ := dωαβ + ωαγωβ
γ − Hαβ = 0 , R

αβ̇
:= d+ ωαγh

γ
β̇
+ ω

β̇ δ̇
hα

δ̇ = 0

Hαβ := hαα̇ ∧ hβ
α̇ , H

α̇β̇
:= hαα̇ ∧ hα

β̇
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4d Massless Fields

Infinite set of integer spins 1988

ω(y, ȳ | x) , C(y, ȳ | x) f(y, ȳ) =
∑∞

n,m=0
1

n!m!fα1...αn,α̇1...α̇my
α1 . . . yαnȳα̇1 . . . ȳα̇m

ω(µy, µȳ|x) = µ2(s−1)ω(y, ȳ|x) , C(µy, µ−1ȳ|x) = µ±2sC(y, ȳ|x)

ω: finite number of components (derivatives) for definite spin

C: infinite number of components (derivatives) for definite spin

Fronsdal fields:

ω(µy, µ−1ȳ|x) = ω(y, ȳ|x) , C(0,0|x)

All other components of ω and C are derivatives of the Fronsdal fields
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Free Field Unfolded Massless Equations

The full unfolded system for free massless bosonic fields is 1989

⋆ R1(y, y | x) =
i

4

(
ηH

α̇β̇ ∂2

∂yα̇∂yβ̇
C(0, y | x) + η̄Hαβ ∂2

∂yα∂yβ
C(y,0 | x)

)
⋆⋆ D̃0C(y, y | x) = 0

R1(y, ȳ | x) := Dad
0 ω(y, ȳ | x) Dad

0 = DL − hαβ̇
(
yα

∂

∂ȳβ̇
+

∂

∂yα
ȳβ̇

)

D̃0 = DL + hαβ̇
(
yαȳβ̇ +

∂2

∂yα∂ȳβ̇

)
DL = dx −

(
ωαβyα

∂

∂yβ
+ ω̄α̇β̇ȳα̇

∂

∂ȳβ̇

)
⋆⋆ implies that higher-order terms in y and ȳ describe higher-derivative

descendants of the primary HS fields Perturbative unfolded equations

dxC = σ−C + lower-derivative and nonlinear terms

σ− := hαβ̇ ∂2

∂yα∂ȳβ̇
, σ2− = 0 .

σ− is the substitute of space-time differential in the unfolded dynam-

ics formalism with respect to which spin-locality has to be defined in

general unfolded system.
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HS Vertices

The problem: consistent nonlinear corrections 1988 in the local frame

dxω = −ω ∗ ω +Υ(ω, ω,C) +Υ(ω, ω,C,C) + . . . ,

dxC = −[ω,C]∗ +Υ(ω,C,C) + . . .

(f ∗ g)(Y ) =
∫

dSdT exp iSAT
A f(Y + S)g(Y + T ) , Y A = (yα , ȳα̇)

Υ(ω, ω,C) Central On-Mass-Shell Theorem (1988)

Υ(ω,C,C) zero-form sector corrections Didenko, Gelfond, Korybut, MV 2016-2018,

Υ(ω, ω,C,C), Υ(ω,C,C,C) Didenko, Gelfond, Korybut, MV 2019, 2009.02811

Υ(ω, ω,C,C) = Υηη +Υη̄η̄ +Υηη̄ ,

where η is an arbitrary complex parameter of the d = 4 HS theory.

Υηη(ω, ω,C,C) = Υηη
ωωCC +Υηη

ωCωC +Υηη
CωωC +Υηη

CωCω +Υηη
CCωω +Υηη

ωCCω ,

Υη̄η̄(ω, ω,C,C) = Υη̄η̄
ωωCC +Υη̄η̄

ωCωC +Υη̄η̄
CωωC +Υη̄η̄

CωCω +Υη̄η̄
CCωω +Υη̄η̄

ωCCω ,

Υηη̄(ω, ω,C,C) = Υηη̄
ωωCC +Υηη̄

ωCωC +Υηη̄
CωωC +Υηη̄

CωCω +Υηη̄
CCωω +Υηη̄

ωCCω
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Spin-Locality in 4d HS Theory

Nonlinear corrections have the form

F (P ij, P̄ kl)C(Y1) . . . C(Yn) , P ij :=
∂

∂yαi

∂

∂yjα
, P̄ ij :=

∂

∂ȳiα̇
∂

∂ȳjα̇

with some non-polynomial functions F (P ij, P̄ kl)

Spin-locality: polynomiality of F (P ij, P̄ kl) in either P or P̄

Projector on fixed spins relates degree in P ij and P̄ kl to each other!
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Nonlinear System via Doubling of Spinors

Direct analysis of nonlinear deformation of the free unfolded equations

is possible in the lower orders 1988 but quickly gets complicated The

efficient trick MV 1992 reduces the problem to De Rham cohomology

with respect to additional spinor variables.

ω(Y ;K|x) −→ W (Z;Y ;K|x) , C(Y ;K|x) −→ B(Z;Y ;K|x)

Y A = (yα, ȳα̇), ZA = (zα, z̄α̇)

Some of the nonlinear HS equations determine the dependence on ZA

in terms of “initial data” ω(Y ;K|x) and C(Y ;K|x)

S(Z;Y ;K|x) = θASA(Z;Y ;K|x) is a connection along ZA (θA ≡ dZA)

Klein operators K = (k, k̄) generate chirality automorphisms

kf(A) = f(Ã)k , A = (aα , āα̇) : Ã = (−aα , āα̇)
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Nonlinear HS Equations



dW +W ⋆W = 0
dB +W ⋆ B −B ⋆W = 0
dS +W ⋆ S + S ⋆W = 0 1992
S ⋆B−B ⋆ S = 0

S ⋆ S = i(θAθA + ηθαθαB ⋆ k ⋆ κ+ η̄θ̄α̇θ̄α̇B ⋆ k ⋆ κ̄)

Inner Klein operators:

κ = exp izαyα , κ̄ = exp iz̄α̇ȳ
α̇ , κ ⋆ f = f̃ ⋆ κ , κ ⋆ κ = 1

Dynamical content is located in the x-independent twistor sector

η = exp iφ is a free phase parameter suggesting 3d bosonization.
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Perturbative Analysis

Vacuum solution

B0 = 0 , S0 = θAZA , W0 =
1

2
wAB(x)YAYB

dW0 +W0 ⋆ W0 = 0 , wAB : AdS4

[S0 , f ]⋆ = −2idZf , dZ = θA
∂

∂ZA

First-order fluctuations

B1 = C(Y ) , S = S0 + S1 , W = W0(Y ) +W1(Y ) +W0(Y )C(Y )

Order-n equations containing S have the form

dZUn(Z;Y |dZ) = V [U<n](Z;Y |θ) dZV [U<n](Z;Y |θ) = 0

can be solved as

Un(Z;Y |θ) = d∗ZV [U<n](Z;Y |θ) + h(Y) + dZϵ(Z;Y |θ)

d∗ZV (Z;Y |θ) = (ZA −QA)
∂

∂θA

∫ 1

0

dt

t
V (tZ + (1− t)Q;Y |tθ)
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Interpretation

The contracting homotopy freedom encodes:

All possible gauge choices in dz-exact forms dzϵ(Z;Y |dZ)

All possible choices of field variables in dz cohomology h(Y)

Any unfolded HS system is associated with one or another solution to

the nonlinear HS system.

Unfolded equations that appear in the sector of dZ cohomology au-

tomatically reproduce consistent HS vertices solving the Hochschild

cohomology problem.

How to single out the proper (e.g., minimally nonlocal) frames?
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Shifted Homotopy

Contracting homotopy ∆q,β

∆q,βf(z, y, θ) :=
∫

d2ud2v

(2π)2
e(ivαu

α)
∫ 1

0

dt

t
(z−u+q)α

∂

∂θα
f(tz+(1−t)(u−q), βv+y, tθ) .

Obeys resolution of identity

{dZ ,∆a}+ ha = Id .

with the cohomology projector

hq,β(f(z, y, θ)) =
∫

d2ud2v

(2π)2
exp ivαu

αf(u− q, βv + y,0)

Spin-local limit: β → −∞ with QA = β ∂
∂Y A

Didenko, Gelfond, Korybut, MV 1909.04876

Local vertices up to the quintic order!
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Conclusion

The shifted homotopy scheme is proposed leading to spin-local HS

vertices derived from the nonlinear equations.

A class of new local vertices is found up to the quintic order.

Didenko, Gelfond, Korybut, MV 1909.04876, 2009.02811

Indications that HS gauge theory is spin-local in higher orders

Main problem on the agenda:

spontaneous breaking of HS symmetries

in the Coxeter HS models 1804.06520
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Properties

• General applicability

• Manifest (HS) gauge invariance

• Invariance under diffeomorphisms

• Clear group-theoretical interpretation of fields and equations in

terms of modules and Chevalley-Eilenberg (Hochschild in HS theory)

cohomology of a symmetry algebra s

Background fields: flat connection of s

Fields: s-modules

Equations: covariant constancy conditions

• Local degrees of freedom are in 0-forms Ci(x0) at any x = x0

(as q(t0)) infinite-dimensional module dual to the space of single-

particle states: Ci(x0) moduli of solutions

• Independence of ambient space-time

Geometry is encoded by GΩ(W )
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Coxeter HS Equations

Unfolded equations for 1804.06520 C-HS theories remain the same except

iS ⋆ S = dZAndZAn +
∑
i

∑
v∈Ri

ηiB
dZA

n vndZAmvm

(v, v)
⋆ κv

κv are generators of C acting trivially on all elements except for dZA
n

κv ⋆ dZn
A = Rv

n
mdZm

A ⋆ κv .

ηi is a coupling constant on the conjugacy class Ri of C.

In the important case of the Coxeter group Bp

iS ⋆ S = dZAndZAn +
∑

v∈R1

η1B
dZA

n vndZAmvm

(v, v)
⋆ κv +

∑
v∈R2

η2B
dZA

n vndZAmvm

(v, v)
⋆ κv

with arbitrary η1 and η2 responsible for the

HS and stringy/tensorial features, respectively

η2 ̸= 0 for p ≥ 2

The framed construction leads to a proper massless spectrum.

Jacobi for Cherednik imply consistency of field equations.
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Klein Operators and Single-Trace Operators

Enlargement of the field spectra of the rank- p > 1 Coxeter HS models:

C(Y n
A ; kv) depend on p copies of oscillators Y n

A and Klein operators kv.

Qualitative agreement with enlargement of the boundary operators in

tensorial boundary models

Klein operators of Coxeter reflections permute master field arguments

At p = 2 the star product of two master fields (C(Y1;Y2|x)k12) gives

(C(Y1;Y2|x)k12) ⋆ (C(Y1;Y2|x)k12) = C(Y1;Y2|x)C(Y2;Y1|x)

p = 2 system: strings of fields with repeatedly permuted arguments

Cn string := C(Y1;Y2|x) ⋆ C(Y2|;Y1|x) ⋆ C(Y1;Y2|x) . . .︸ ︷︷ ︸
n

are analogous of the single-trace operators in AdS/CFT .

C(Y1;Y2|x) and C(Y1;Y2|x)C(Y2;Y1|x): single-trace-like

C(Y1;Y2|x)C(Y1;Y2|x): double-trace-like.

For p > 2 fields carry p arguments permuted by Sp generated by kij
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Relation with space-time locality

Conceptual problem with the space-time definition of locality in AdS.

Lorentz-covariant derivatives Dn commute to a constant: background

AdS curvature

[Dn , Dm] = Rnm

giving meaning to non-polynomial functions of Dn demands a particular

ordering prescription

Y variables provide an appropriate ordering for Dn derivatives
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HS Theories and String Theory

HS theories: Λ ̸= 0, m = 0, symmetric fields s = 0,1,2, . . .∞

First Regge trajectory

String Theory: Λ = 0, m ̸= 0 except for a few zero modes

Infinite set of Regge trajectories

What is a HS symmetry of a string-like extension of HS theory?

MV 2012, 2018, Gaberdiel and Gopakumar 2014-2018

String Theory as spontaneously broken HS theory?! (s > 2;m > 0).
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Most Urgent Problems

Appropriate scheme leading to (spin-local) choice of variables.

Didenko, Gelfond, Korybut, MV 2016 - 2019

String-like and Tensor-like HS theory!?

MV 1804.06520; Degtev, MV 1905.11267
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Quantum Gravity Challenge

QG effects should matter at ultra-high energies of Planck scale

MP = 1019GeV

A distinguished theoretic possibility is to conjecture that the regime

of ultra high (transPlanckian) energies exhibits some high symmetries

that are spontaneously broken at low energies

Idea: to understand what kind of higher symmetries can be introduced

in relativistic theory and to see consequences

HS gauge theory:

theory of higher symmetries consistent with unitary QFT

Must be beautiful

and can affect fundamental concepts of gravity and quantum mechanics

It is and it does!
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Contracting homotopy

Contracting homotopy

∆(1−β)q ,β(f) =
∫
d2ud2v

(2π)2

∫
d3+τδ(1−

3∑
i=1

τi)
[

(1− β)τ1
1− β(1− τ2)

]p−1

exp i[vαu
α + τ1zαy

α − τ2qαy
α]

(1− βτ1)(z + q)β − βτ3(u+ q)β

1− β(1− τ2)

∂

∂θβ

ϕ

(
τ1z +

τ2τ3β

1− β(1− τ2)
u− τ2q, v + τ3y, θ,

1− τ3 − βτ1
1− β(1− τ2)

)
p is the degree of f in θ

and cohomology projector

h(1−β)q ,β(f) =
∫ 1

0
dτζ−2

∫
d2ud2v

(2π)2
exp i[vαu

α + τ(1− β)ζ−1yαq
α]

ϕ(τ(βu− (1− β)q)ζ−1, (1− τ)(v + yζ−1), τ)

ζ := (1− βτ)

are well defined for any −∞ < β < 1
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Pre-Ultra-Locality Theorem

Though β-shifted homotopy is well defined for any −∞ < β < 1 it is not

guaranteed that the limit β → −∞ is well defined.

It is shown that the sufficient condition for it to be well defined is that

the r.h.s. of the equation for the order-m correction Sm to S

−2idzSm = −
m−1∑
k=1

Sk ∗ Sm−k +Bm ∗ γ

belongs to H+0
2

−
m−1∑
k=1

Sk ∗ Sm−k +Bm ∗ γ ∈ H+0
2

Moreover, in this case the correction to dynamical field equations turns

out to be Pre-ultra-local which means that arguments of the zero-

forms C turn out to be y-independent. By Pfaffian locality theorem

contractions between the arguments of C must be zero at least in the

order C2.
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Example

The simplest vertex is

Υηη
ωωCC =−

η2

4

∫
[0,1]2

dσdσ′ σσ′
∫

d3+τδ(1−
3∑

i=1

τi)τ1 (∂1α∂
α
2)

2

exp
[
i(τ2σ + τ3σ

′ + τ1σσ
′)∂1α∂

α
2

]
ω(y−(1−τ3)σy, ȳ;K) ∗̄ω(τ3σ′y, ȳ;K)∗̄

∗̄C(τ2σ∂1+(1−σ′(1−τ2))∂2, ȳ;K) ∗̄C(−τ1σ∂1−σ′τ1∂2, ȳ;K) ,

where ∂1 and ∂2 are derivatives over the arguments of the first and

second facors of ω(y).

∗̄ is the star product with respect to the barred variables ȳ

Ultralocality: no y-dependence and contractions between the argu-

ments of zero-forms C.

Substituting into the r.h.s. of unfolded equations

dxω = −ω ∗ ω +Υ(ω, ω,C) +Υ(ω, ω,C,C) + . . .

singling out ysȳs−2 components and integrating over the homotopy pa-

rameters σi and τi we obtain a local deformation of Fronsdal equations.
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Spin-Locality

Space-time is described by a chosen flat (vacuum) connection of the

global space-time symmetry s.

σ−, which is the most negative grade part of the flat connection is

directly related to the space-time geometry.

HS currents Js
s1s2

form s-modules different from the HS fields Cs.

Cs1 ⊗ Cs2 =
∞∑
t=0

Jt
s1s2

Very much like it makes sense to distinguish between HS fields Cs

associated with different g-modules characterized by different spins s

HS currents Js
s1s2

(Cs1, Cs2) should be considered as different s-modules

to be distinguished from the HS massless modules carried by Cs.

Spin-locality implies that nonlinear corrections to field equations has

to be local in terms of original fields Cs and all currents Js
s1s2

.
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Spin-Locality Versus Space-Time Locality

For theories with a finite number of fields Cs and currents Js
s1s2

(C,C) , . . .

spin-locality implies usual space-time locality with a finite number of

derivatives of the original fields Cs

DLCs(Y ;K|x) = iλhαβ̇
(
yαȳβ̇−

∂2

∂yα∂ȳβ̇

)
Cs(Y ;K|x)+

∞∑
s1,s2=0

Js
s1s2

(Y ;K|x)+ . . . .

As a result, interpretation of C in terms of space-time derivatives ac-

quires J-dependent corrections affecting space-time equations

LFRCs =
∞∑

s1,s2=0

Js
s1s2

[Cs1 , Cs2] +
∞∑
t=0

∑
s1,s2,s3

Js
s1t

[
Cs1 , J

t
s2s3

]
+ . . . ,

where (abusing notation) Cs is a spin-s Fronsdal field,

LFRCs is the l.h.s. of free Fronsdal equations.

Once currents in corrections to Fronsdal equations are treated as inde-

pendent fields (corresponding to independent operators of the bound-

ary operator algebra) these terms are still local containing a finite

number of derivatives of each current.
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Historical Comments

Cubic vertices of A.Bengtsson, I.Bengtsson, Brink (1983); Berends, Burgers, van

Dam (1984) are local as well as their AdS extension Fradkin, MV 1987

Importance of the locality issue in HS theory was stressed in

Prokushkin, MV 1998

Proposal for interpretation of locality in terms of star-product functions

MV 2015

Analysis of HS corrections in nonlinear HS equations via conventional

homotopy led the authors to misleading conclusions instead of the

proper interpretation that conventional homotopy is not appropriate

Skvortsov, Taronna et al 2015-2017

Analysis of locality of HS corrections in nonlinear HS equations via sep-

aration of variables MV 2016 and shifted homotopy formalism Didenko,

Gelfond, Korybut, MV 2016-2019 led to proper answer first at the lowest

level and then far beyond.
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Free Fields as s-Modules

Let Wα contain p-forms Ci (e.g. 0-forms) and Gi be linear in ω and C

Gi(ω, C) = −ωα(Tα)
i
j ∧ Cj .

Compatibility condition implies that (Tα)ij form some representation T

of s, acting in a carrier space V of Ci. The unfolded equation is

DωC = 0

Dω ≡ d+ ω: covariant derivative in the s-module V .

The covariant constancy equation : linear equations in a chosen

s-symmetric background described by the flat connection ω : (Dω)2 = 0.

s: global symmetry

δCi(x) = εα(x)(Tα)ijCj(x) , Dωε = 0
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Unfolding and holographic duality

Unfolding unifies various dualities including holographic duality

Extension of space-time without changing dynamics by letting the

exterior derivative d and differential forms W live in a larger space

d = dXn ∂

∂Xn
→ d̃ = dXn ∂

∂Xn
+ dX̂n̂ ∂

∂X̂n̂
, dXnWn → dXnWn + dX̂n̂Ŵn̂ ,

X̂n̂ are additional coordinates

d̃WΩ(X, X̂) = GΩ(W (X, X̂))

Two unfolded systems in different space-times are equivalent (dual) if

they have the same unfolded form. Given unfolded system generates

a class of holographically dual theories in different dimensions.

Useful applications:

sp(8)-invariant formulation of 4d massless equations 2001

derivation of superfield formulations of SUSY models (Misuna, MV (2013))

HS holography 2012,2015

35


