Flux Compactification for the Critical Non-Abelian Vortex and Quark masses

A. Yung

ADVANCES IN QUANTUM FIELD THEORY, October 2021

1 Introduction

Seiberg and Witten 1994 : Confinement in the monopole vacuum of $\mathcal{N}=2$ supersymmetric QCD

Cascade gauge symmetry breaking:

- $\mathrm{SU}(\mathrm{N}) \rightarrow \mathrm{U}(1)^{N-1}$
condensate of adjoint scalars
Example: $\mathrm{SU}(2) \rightarrow \mathrm{U}(1)$
- $\mathrm{U}(1)^{N-1} \rightarrow 0$
condensate of monopoles
At the last stage Abelian Abrikosov-Nielsen-Olesen flux tubes are formed.
Abelian confinement

Non-Abelian vortex strings

In the search for a non-Abelian confinement
Non-Abelian vortex strings were found in $\mathcal{N}=2 \mathrm{U}(\mathrm{N})$ QCD
Hanany, Tong 2003
Auzzi, Bolognesi, Evslin, Konishi, Yung 2003
Shifman Yung 2004
Hanany Tong 2004
Non-Abelian string : Orientational zero modes
Rotation of color flux inside $\mathrm{SU}(\mathrm{N})$.
Non-Abelian vortex string is BPS and preserves $\mathcal{N}=(2,2)$ supersymmetry on its world sheet.

Shifman and Yung, 2015: Non-Abelian vortex in $\mathcal{N}=2$ supersymmetric QCD can behave as a critical superstring

Idea:
Non-Abelian string has more moduli then Abrikosov-Nielsen-Olesen string.
It has translational + orientaional moduli
We can fulfill the criticality condition: $\ln \mathcal{N}=2$ QCD with $\mathrm{U}(N=2)$ gauge group and $N_{f}=4$ quark flavors.

- The solitonic non-Abelian vortex have six orientational and size moduli, which, together with four translational moduli, form a ten-dimensional space.
- For $N_{f}=2 N 2 \mathrm{D}$ world sheet theory on the string is conformal.

Target space of the world sheet 2D σ-model is

$$
R^{4} \times Y_{6}
$$

where Y_{6} is a non-compact six dimensional Calabi-Yau manifold, the conifold.

Compactification on Y_{6}

Strings in the $U(N)$ theories are stable; they cannot be broken. Thus, we deal with the closed string.

We studied states of closed type IIA string propagating on $R^{4} \times Y_{6}$ and interpreted them as hadrons in $4 \mathrm{D} \mathcal{N}=2$ QCD.
4D Massless states
= Deformations of 10D metric preserving Ricci flatness
Deformations preserving Ricci-flat metric on a Calabi-Yau manifold are $h^{(1,1)}$ Kahler form deformations and $h^{(1,2)}$ deformations of the complex structure.
$h^{(p, q)}$ are Hodge numbers - numbers of harmonic (p, q) forms on Y_{6}.

Conifold == non-compact CY.
Looking for states with normalizable wave function over Y_{6}
String states localized near the conifold singularity.
The only 4D (logarithmically) normalizable state is associated with deformations of the complex structure

Singular conifold

$$
w_{1}^{2}+w_{2}^{2}+w_{3}^{2}+w_{4}^{2}=0
$$

Deformed conifold

$$
w_{1}^{2}+w_{2}^{2}+w_{3}^{2}+w_{4}^{2}=b
$$

Complex modulus b - massless BPS baryon in 4D SQCD

Quark masses

Now let us try to introduce small quark masses in 4D SQCD.
On the field theory side this is the most natural deformation one can think of. The only deformation of $4 \mathrm{D} \mathcal{N}=2$ QCD without higher derivative terms allowed by $\mathcal{N}=2$ supersymmetry.

However, on the string theory side this generates a mass term in the 2D world sheet σ-model breaking its conformal invariance on the classical level.

In terms of 10D supergravity we switch on a deformation and have to solve gravity equations of motion to find a new string vacuum.

Our task: To interpret quark masses in terms of a deformation of the 10D gravity.

Idea: Quark masses are described by a flux "compactification" on the conifold.

Motivation

Since the massless b-baryon is a BPS state its mass is determined by its baryonic charge $Q_{U(1)_{B}}=2$.

$$
m_{b}=\left|m_{1}+m_{2}-m_{3}-m_{4}\right|
$$

where $m_{A}, A=1, \ldots, 4$ are quark masses.

On the other hand, generically fluxes give rise to a potential for moduli on the Calabi-Yau manifold.

Therefore, we expect that

```
Flux in 10D
```

Quark masses in 4D

For type IIA string theory.
even-form RR fluxes \Longrightarrow potential for Kahler moduli
NS 3-form flux \Longrightarrow potential for complex structure moduli
We focus on NS 3-form flux H_{3}

2 3-form flux

$$
\begin{aligned}
& S_{10 D}=\int d^{10} x \sqrt{-G}\left\{R-\frac{1}{2} G^{M N} \partial_{M} \Phi \partial_{N} \Phi\right. \\
& \left.-\frac{e^{-\Phi}}{12} H_{M N L} H^{M N L}-\frac{1}{2} e^{\frac{\Phi}{2}} F_{4}^{2}\right\}, \quad H_{3}=d B_{2}
\end{aligned}
$$

Use perturbation theory at small H_{3}. Solve equations for H_{3} neglecting the back reaction on the metric and dilaton.

$$
d s_{10}^{2}=T\left[-(d t)^{2}+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]+d s_{6}^{2}
$$

Conifold metric

$$
d s_{6}^{2}=d r^{2}+\frac{r^{2}}{6}\left(e_{\theta_{1}}^{2}+e_{\varphi_{1}}^{2}+e_{\theta_{2}}^{2}+e_{\varphi_{2}}^{2}\right)+\frac{r^{2}}{9} e_{\psi}^{2}
$$

$$
\begin{aligned}
& e_{\theta_{1}}=d \theta_{1}, \quad e_{\varphi_{1}}=\sin \theta_{1} d \varphi_{1}, \\
& e_{\theta_{2}}=d \theta_{2}, \quad e_{\varphi_{2}}=\sin \theta_{2} d \varphi_{2} \\
& e_{\psi}=d \psi+\cos \theta_{1} d \varphi_{1}+\cos \theta_{2} d \varphi_{2}
\end{aligned}
$$

Equation for H_{3}

$$
d\left(e^{-\Phi} * H_{3}\right)=e^{-\Phi} d\left(* H_{3}\right)=0
$$

Solution

$$
H_{3}=\mu \frac{d r}{r} \wedge\left(e_{\theta_{1}} \wedge e_{\varphi_{1}}-e_{\theta_{2}} \wedge e_{\varphi_{2}}\right)
$$

3 Potential for the modulus b

Kinetic term for H_{3}

$$
-\frac{e^{-\Phi}}{12} \int d^{10} x \sqrt{-G} H_{M N L} H^{M N L}
$$

Produces the potential

$$
V(b)=\mathrm{const} T^{2} e^{-\Phi} \mu^{2} \log \frac{R_{\mathrm{IR}}^{3}}{|b|}
$$

where $R_{I R}$ is the infrared cut-off.

Run-away vacuum

No mass term for b.

4 Interpretation

Constraints

$$
m_{1}+m_{2}-m_{3}-m_{4}=0, \quad m_{1} m_{2}-m_{3} m_{4}=0
$$

This leads us to

$$
\begin{gathered}
\mu^{2}=\left|m_{1}-m_{2}\right|^{2}, \quad m_{3}=m_{1}, \quad m_{4}=m_{2} \\
<|b|>\rightarrow \infty
\end{gathered}
$$

Conifold degenerates
The sphere S_{2} degenerates, radial coordinate shrinks, the size of the sphere S_{3} goes to infinity.

Non-Abelian string becomes Abelian. No orientational modes. Only two size modes.

5 Conclusions

- The special choice of quark masses in 4D SQCD with $m_{3}=m_{1}$ and $m_{4}=m_{2}$ is interpreted as NS 3-form flux H_{3}.
- H_{3} flux lifts the Higgs branch of the baryon b in 4D SQCD.
- The vacuum is of a run-away type, $<|b|>\rightarrow \infty$.
- At the run-away vacuum conifold degenerates to lower dimensions.
- This is interpreted as a flow from a non-Abelian vortex string to an Abelian one.

