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Motivation for two-loop rational terms

e Theory predictions of O(1%) precision for LHC processes require NNLO calculations
= Automation of numerical two-loop calculations highly desirable

e Higher-order calculations are usually performed in D = 4 — 2¢ dimensions
— Regularisation of divergences in Feynman integrals

e Numerical tools, such as OPENLOOPS [Buccioni et al], RECOLA [Actis et al],
MADLOOP [Hirschi et al], construct the numerator of loop integrals in 4 dimensions
— The D — 4 dimensional numerator part needs to be restored
— One loop: Universal rational counterterms of type [29 [Ossola, Papadopoulos, Pittaul]

from the interplay of (D — 4)-dimensional numerator parts with i_ UV poles

— This talk: Two-loop rational terms of UV origin

Motivation to present two-loop rational terms here

Thanks to Kostja Chetyrkin for many inspiring QFT lessons,
in particular about the R-operation and mass expansions.

Thanks and Congratulations to all the celebrated scientists at this workshop!



. Rational terms at one loop

Generic one-loop diagram ~ in D = 4 — 2¢ dimensions

with Dy (q1) = (q1 + pr)? — m3,
_ . daq
/dQ1 = U (27)”

o N(a1) _
Ay = Jda Do(q) - Dy-1l@)

(D-dim loop momentum ¢;, masses m;y, and 4-dim external momenta py)

Split D-dimensional numerator

_ N qi =q; + g i
N(q) =N(g1)+ N(q1)  with {34 =1 A
D—dim  4—dim (D—4)—dim gV = gt 4 gV

N(q)

. 5 ith J = /dg
= Ay = A1y R, Wi Rig /mDo(Ch)'“DN—l((i)’

= Interaction of N with i UV poles leads to a finite set of universal local counterterms 0R .,

In any renormalisable theory [Ossola, Papadopoulos, Pittau]
IR divergences do not generate rational terms at one loop [Bredensetein, Denner, Dittmaier, Pozzorini]



Tadpole decomposition

Capture UV divergences via tadpole decomposition of propagator denominators
Dy = (q1 +pp)* — m% with one auxiliary mass scale M? [Chetyrkin, Misiak, Miinz]

1 1 Ap(@r) 1
N = I, 5 -
Dy.(q1) qi — M= qf — M* Dp(q)
0 @ at

with polynomial in external momenta and masses AL(q1) = —2q1 - pp. — p% -+ m% — M?

Recursive application — Tadpole expansion up to degree of divergence X and UV-finite remainder:

L (s p®) L& A |
— — —|— F — < = Z _|_ O T
Dk(Ql) ( A X ) Dk(Ql) o—0 (Cj% B M2>0+1 <q%+X>
Tadpole expansion for chains of propagators:
' 1 X A(0><q—.)
S(Z) _ ! F()z() 1 s()?

- - 2 )
A Do(@) - Dy-(@)  o=0 (g2 — M2V TO

where A7)(7,) is a polynomial built from the Ay (k=0,..., N —1).

= Isolate UV-divergences in pure tadpole integrals with one scale M? and
polynomial dependence on external momenta and masses.



Computing one-loop UV counterterms

One-loop diagram ~ in D dimensions:

o B L

: [ It _ q1 4]
A —Z(N T+J\/' T,)T/” o yith  TELHr — dqq -
by = g \ D T g N J Do(qu) - DN— (1)

4-dim e-dim D-dim
Extract UV counterterm with K-operator (MS-like scheme):

JLk
| ek

fr(e) = fL 4 =  Kfr(e) =

k:€

T M

using the tadpole expansion KA - = K S%)/_ll,fy

- R R
KA, =K EO (Nm fr +Nﬂ1 ur)Tm = EONM--WKTM = = KAy = —0Zy,

— Extend this operator to also extract the interplay of A/ with the same UV poles

KA, = 3 S (Wi + N ) KTRE = 57, +0R,

= Capture full UV pole contribution




One-loop rational terms from tadpole integrals

One-loop master formula for computing a renormalised D-dim amplitude

RA ,=Aj+0Z1,=A,+06Z1,+ Ry,

Generic method to compute 0% , from tadpole integrals with one (auxiliary) scale M?:

K 1 R i1+ [y
572177 = (K- K>A1ﬁ B TZ [Nﬂl-"ﬂr - Nm-"ur] KT]/<T1 8

lefl . CﬁTA(U)

using the tadpole expansion KTh!' " =K Sgp T M =K )go Jda ( M2)N+o
o= a1 —

e Dependence on external momenta and masses resides solely in numerator (N(ql) —|-N(Q71)>A<U)
in polynomial form = Proof that 0% . is indeed a rational term.

® 0% - stem from same poles as 0.2 ~ = finite set of rational terms in any renormalisable theory.

e Results for 7) 4 and 0R ., independent of M? since| K T]L_\Lflmﬂr =K Sgp T]A_\Lflmﬂr is exact,

and the L.h.s. (original denominators D(q)) is M*independent.




One-loop subdiagrams in two-loop diagrams

Numerator in D dimension (including ¢ and Lorentz indices & = (o, a3))

KAL, = ( (@) + N (@2)) K TR ()

= —521,7(612) +0RT ,(¢2)

Numerator in 4 dimensions (but D-dim ¢, in denominator)

KA (2) = Nﬁl (@) KTR (g0 + o)
—~ —52(1)‘,7(%)—521,7(@2)

o 0/ (o) = J\/'O‘

e (G o) KT+ """ (g2) = Projection of UV counterterm to 4-dim

S, R e 3 iy
o 670, (0) =~ E MR (@K (TR (2 + @) — TR (g2)) o &

= New term stemming from tadpole expansion of T]l\Lfl...MT(QQ + ¢2)). For one propagator:

1 ! +—(CI%+C?§)—2((J1-qz+c]1-q2)+m2—M2+
(@1 + @+ @)* —m? g1 — M? (3 — M2)2




UV subtracted one-loop subdiagrams

Fully UV subtracted amplitudes in D and 4 dimensions can be identified

AL (@) — KAT (@) = AT (g2) — KA (2) +O(e, ¢o)
D-dim 4-dim
= Master formula for one-loop subdiagrams:

AL (@) + 028 (@2) = AT (@) + 627 (@) + 027 (@) +  6R{(@2)  +O(e, ).

D-dim renormalisation 4-dim renormalisation (D — 4)-dim restored

~2

Extra UV counterterm 523%(@2) x 2 = O(1) non-zero only for quadratic divergence

Example: Photon selfenergy (MS scheme)

a - _ [l 4 o g6y a1 -an a (e 4 o e or o
5Zl,7<QQ> = ( ) <QZ9 42 42 )7 5Z1,7<QQ>_ A 3€<QQ9 — 42 92 )7

~ R i) 2 q~2 i 2
5Ziy(@2) = () ~ =2 g™, 573%0(@2) = (77) 3 Q% g™



Il. Rational terms at two loops

Generic irreducible two-loop diagram ' consists of three chains C;(g;) and two vertices V), Vi

q: Vo -

S

Dli)(g) = DY(@)- - DN_ (@)

_ — 3 —/.
N @) = Vv - ITN0(g)

g3——(q1+q2)

Three subdiagrams ~; from chains C; and C;,

7/7Z /d

Complements ['/~;
R | ~ e A (g . N @)
20 = Ay "y T / q; 1,%-(QZ> ' Y-

Apr=1¢C G C,: = [dq [dg DU (g,

N(q1, )
DE)(g) DB () lig——(@1+a)

<— denominators Dy)(@) = (@ ‘|’pia)2 —m?

a

= Factorisation of chains
< (i|jk) is a partition of (123)

< Superficial degree of divergence X (7;)
X (v;) > 0 = Subdivergence of I'
X(I') > 0 = Global divergence of I

= Factorisation of ; and I'/~;



Renormalised D-dimensional amplitude

Renormalisation procedure based on R-operation [Bogoliubov, Parasiuk; Hepp; Zimmermann; Caswell, Kennedy]

All amplitudes with

R./ZlQF — ./ZlQF ‘|‘ 2521 .'./lep . ‘|‘ (SZQF
’ ’ Vi i L/ N numerator dimension
subtract subtract remaining
subdivergences local divergence Dy=D

Example: R w@ = [% + “<é521,% + W“X<Z2,F
Dy=D Dn=D
R-operation: R./Zl27r = (1 - Ky — Kioe) AQ,F
1. Subdivergences: K, leI :%(K /_ll,’yl'>."zll,1—‘/'yz-7 K/_ll,% = —021,.(q)
2. Remaining divergence: Ky, AQ,F =K (1 - Kgy) leI = —0Zy < local counterterm

Linear operations wrt sums of diagrams or sums of terms in a single diagram, e.g.
Ksup (%: AQ,F(;) - %: Ksuh AQ,FO

Goal: Computation of R A, 1 from amplitudes with numerator dimension D, = 4




Master formula for computation of renormalised D-dimensional amplitude from
amplitudes with loop numerators in D, =4

RA p=Ayp + 5 ( 071, +0Z1, + O0Ry, ) Ayt ( 0%, + ORar )

_,N_/ ~——— —_——
subtract restore N\ -terms subtract remaining restore remaining
subdivergences  from subdiagrams local divergence N -term

e Amplitudes on rhs computed with numerators N (q1, ¢2) = N (q, q_g)l___ o )
gt —=gh?, yh =k, gi—rq;

e Subtract (sub-)divergences and restore J\N/—ferms (from subdiagrams and a remaining global)
stemming from N (g1, 32) = N(q1, ¢2) + N(q1. ¢2)

The master formula implicitly defines

5R27p — ('AQI -+ %:521,’Y'A1,F/’V) — (AQ’F -+ %:(521774—52177 + 57%177) ‘ALF/V)

computed in D, = D computed in D, =4
To be shown in the following:
e )RRy is a rational term.
e In renormalisable theories there is a finite set of 0R, - # 0.

e Generic method to compute 0k, | once and for all.
10



Case 1: Two-loop diagrams with no global divergence

Superficial degree of divergence of two-loop diagram X (I') < 0
= At most one subdivergence, i.e. one subdiagram ~ with X (v) > 0

0Q

RAr= (1-KA, - Ay, -

l ‘é —1_ | 5Zl7f}/
divergence subtracted no divergence s Y

= (Al,y +07Z) ) - A/ +0O(e) < Project finite chain to D, = 4

Dn:D

— <_,41ﬁ + 071+ 52177 4+ 5731,/» : Al,F/’Y + O(e) < Express UV subtracted

subdiagram in D,, =4
e.:g. l A§ —+ A % (52177 +5Zl77 -+ 573177)

= Two-loop N -contribution 0Rypr =0 and UV counterterm 67, = 0 for X(I') <0.

Dn:4

= Only globally divergent diagrams contribute to 0%, - and 02, 1

= Finite set of R, p and 0Z, p counterterms in any renormalisable theory

11



Case 2: Two-loop diagrams with a global divergence

G Vo >

/f I 3
; = ‘-. {170171 TN ()
— : (g

K
~—
S
DO
SN—
— |
Nl
~—
S
w
N~—
N
g
w
SN—
Q|
i

|
/N
Q|
—_
_|_
K
DO
N~—

Isolate all (sub)divergences via tadpole decomposition for every chain C; (i = 1,2, 3)

e Define for each chain C; the maximum degree of divergence of the full diagram (X (I") < 0)
and the two sub-diagrams ;, 7}, involving this chain < (i|jk) is a partition of (123)

X; = Max {X<F>7 X<7])7 X(fyk)}

e Decompose the diagram using the tadpole expansion operators (acting on individual chains)

Ao = (S% + FS?) (Sg?) + F()?) (Sé?> + F%) Ao 1

1 2 2 3

12




Case 2: Two-loop diagrams with a global divergence

n e e®) 1 S (i) e(f) (k) 7 S (i) e(j) (K
App = SYISKIS Ay X Fg()isg‘%zsg(,iAz,rJr(2.215()(1':%':9

Global divergence

+FUFD FS?-)) Ay

k 1 2 3 )

No global and at most No divergences
one subdivergence

Exploit the linearity of the R-operation (i.e. of the operators K, K¢, K|oc) and apply
the master formula (implicitly defining 0%, 1)

R/_lz’r — .AQI + %7; (521’% + 521’% -+ (57?/17% ) . AI,F/% -+ ( 522711 + 5R2,F )

f —_———— —_———
subtract restore N'-terms subtract remaining restore remaining
subdivergences  from subdiagrams local divergence N -term

to each term in

- 3 i N (k) =
R.AQ,[‘ — R (S%iS%S%AZF) + @'§1 R (F(X)ZS()Q (X;iA?,F) + ...

case 1 = no contribution to /R, -

= Only the pure tadpole term S%S%S%AZF contributes to 0R, 1 and 0Z;

13



Two-loop rational terms from massive tadpoles with one scale /2

Generic method to compute N-contribution

Example:

5722){‘ — —|‘ SXl 5Z1’71

Dn:4

771—%5721 70

1) a(2)e(3
sggsg(;sg(;@ <§
1) a(2) (3
- S&is&gsg{;“@ T SX1“<§ 5Zlm+521%+57€1m)
e el
exploiting K {S&;S%&(ﬁ) = —0/1 [ <> :—521,71@2) 521,71< )
Dnhn=D Dp=4

e Only numerators depend on external momenta and masses in polynomial form

= 0Ry 1 is indeed a rational term

e Linearity of the R-operation allows generalisation to sets of diagrams
= Compute finite set of rational counterterms 0R , 0Ry
and UV counterterms 5215, 0Zy 1, 0Z9 1 only for the 1Pl UV-divergent
vertex functions I' of any renormalisable model once and for all!

14



Calculation of two-loop rational terms

e Implementation in the GEFICOM [Chetyrkin, M.Z] framework: QGRAF [Noguira]
— Q2E+EXP [Seidesticker, Harlander, Steinhauser] — FORM [Vermaseren| code — MATAD [Steinhauser]

e Checked with independent in-house calculation using IBP identities [Chetyrkin, Tkachov]
Example: Lqep = 9(iv" Dy — m)) — (Fu F* — 555 (01 A,)?

Structure of rational term for fermion propagator in the MS scheme :

k
—®—— =2 (i)

REL P, + IR, mdss

k=1 T
) 9 . 19 143 11 .\ 1 (247 293 391
SRYZe = —1+ Riee = 15~ 1 39 2) ( 14400 2)
L 3l 2 18~ 21 30" ) 2 Tos T sea T 1aa00” )
) 1 . AT 1 )\ 1 5 13 7
SR — 9= SR (114, o 2) (__ 7 2)
L X 2 T T o T T aa T g8

1

e Interaction of N with . poles leads to rational terms o *
£ p g

e Rational terms depend on the gauge parameter

e In general: Non-trivial dependence on the renormalisation scheme

— Can be fully expressed in terms of the one-loop UV counterterms 671,071 ce, . . .
15



Status of two-loop rational terms

e Complete set of QED rational terms in MS schemes with full gauge parameter dependence
L 1 JHEP 05 (2020) 077 [arXiv:2001.11388]
—>—<X>—>— / /\/\’®/\/\/V l%@< ;{ [Pozzorini, Zhang, MZ]

e Renormalisation scheme dependence of rational terms in any model,
complete set of SU(N) and U(1) rational terms in a generic renormalisation scheme

117(1_1‘_@_‘2@2 ! lllIUUWMU;Q 1 3'*"@"*';2 !
. . a JHEP 10 (2020) 016 [arXiv:2007.03713]

19, C 2 2 1

> D2 m 1o . ..
“ o 1 & as < [Lang, Pozzorini, Zhang, MZ]
I 1 1 as ! ! 13 “y.

_ 7% ’ ay a3

i1, 0

28] Ha H3 as

e Relation between rational terms in spontaneously broken models

to the ones in the symmetric phase through vev expansions,
[arXiv:2107.10288]

complete set of rational terms for QCD corrections to the SM (Lang, Pozzorini, Zhang, MZ]

Current and future projects:
e Two-loop rational terms for the full SM

e M -interactions with IR poles

16
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Summary

e Renormalised amplitudes in D-dimensions can be computed from amplitudes with 4-dimensional
numerators and a finite set of universal UV and rational counterterm insertions:

RA, = A, +0Z,+0R,
RAr = Ayr+ z (5Zm +0Z15 7+ 5731,7) Avr/y (5Z27F * 5R2>F)

= Numerical implementation in automated tools, e.g. OpenLoops, possible

e Generic method to compute 5RLW1 52177 and (5ZL7,7 from simple tadpole integrals, which
also serves as a proof that they are rational

e Complete renormalisation scheme dependence available

e Connection between rational terms in symmetric theories and their spontaneously
broken counterparts through systematic vev expansions

e Full set of rational terms at two-loop level for
— QED with full dependence on the gauge parameter
— SU(N) and U(1) in any renormalisation scheme
— QCD corrections to the SM

17




Backup
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Details of the calculation

Generic formula for calculation of two-loop rational terms:

D e(2) 3) + ) =
ORop = (5%5(){;52{;“‘% + %521,% ' S%““M/%)

Tadpole expansion in D, = D with subtracted subdivergences

l)e(2) (3 > '
(sgs&;s&;/\g,p 2 (02154021 + 6R ) - SKA T /7)

Tadpole expansion in D,, = 4 with subtracted subdivergences and restored subdiagram rational terms

o (el elk gk
exploiting K (sggsg(;Am) 071, +0R ., K (s%sg{;AL%) — 071 ()07, - (G2)
Explicit structure:

3
0Ror = [dqi [dg2 N (q1, @2) — N(q1. ¢2)] @E

2-loop numerator difference

%’ N
0i=0 (g7 — M)t

+ ...

43=—41—9q2
2-loop tadpole integral

3 . — Z . ~ N ’L XZ A§02> _Z'
+¢§1/in [521,% N )(qz') - (521,% + 021 5,(4i) + 57317%') hl >(q@-)] 020 (47 — Mé;]]\zﬁai

1-loop numerator difference with CT insertions

1-loop tadpole integral

19



Optimisations of the calculation of rational terms

The tadpole expansion of a single propagator

sl 1 _ X (M@

= th  A(G) = —p2 — 2G; - .
A D) o=0 (g2 — m2)" " wi k(i) = =Pk — 24 - p, + My,

is designed such that (1 S<X>>Dk( 3 < O ( X+1) But it contains different orders of g;
= Potentially many finite terms generated, which cancel in the difference
Ry = 5%5%5% (Aop — Agp) +
Optimisations (for details see JHEP 10 (2020) 016 [arXiv:2007.03713]) [Lang, Pozzorini, Zhang, MZ]
e Power counting in external momenta and masses = Restriction to mass dimension of the result
e Power counting in loop momenta ¢; = Discard terms without UV (sub)divergences

e Taylor expansion trick:
o Add the auxiliary mass M? in every propagator denominator D;. by hand
o Generate the relevant terms of the tadpole expansion through a Taylor expansion
in external masses and propagators
o Perform a separate M?-expansion or use the M *-independence of the result
to construct auxiliary M?-counterterms order by order.

20
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Reducible one-loop diagrams

Generic unrenormalised amplitude of a one-loop diagram ~

- @ 101---ON N
Ml,’y = = A 'Hl [wi]ai y
’[/:

1y
OO

e Amplitude fllﬁ of the 1Pl amputated one-loop subdiagram of ~

e Factorised subtrees w; (blue bubbles)
- 101...0 N
RMyy = (RATSN) I [wil,,
In the 't Hooft—Veltman scheme all tree structures w; are in 4 dimensions.
= External momenta and indices of the 1P| amplitude ./Ilﬁ handled as 4-dimensional

= Tree structures do not generate rational terms (even in other schemes due to factorisation)

= Rational terms can be determined at the level of 1Pl subdiagrams

21



Reducible two-loop amplitudes

RA = Ayp+ > (5217% + 071 -+ 5731,7) A+ (5225 + 5R2,r)

which was derived for 1P| amplitudes is applicable to any two-loop process [' due to the factori-
sation of external subtrees. Full diagram or process (sum of diagrams) I":

— B : . —0'1...0'N .
Mor = ‘. @ | = A | A Wil
F‘/i 1Pl amputated  Eyternal subtrees
amplitude (blue bubbles)

_ _ N
0'1...0'N
RMyr = (RAZFY) AL wilg, -
= Tree structures do not generate rational terms

Similar for amplitudes composed of 1P| one-loop subdiagrams, j and

= Finite set of rational counterterms stemming from 1Pl UV-divergent vertex functions
allow for two-loop computation of all processes

22



Proof of master formula for one-loop subdiagrams

Fully UV subtracted amplitude in D dimensions:
R _ _

./é_l?iv((b) — R ./Zl%v((b) — TEONﬁl...IL—LT<62> [T]'szlﬁr<62> _ KT]’%lﬂT(Q_Q)] .

Fully UV subtracted amplitude in 4 dimensions:

_ R ) T
AT a2) ~ K AT (@2) = % Ny 02) [TH (@) — KT ()]

Since all UV poles are cancelled in [...] we find

TR (@)~ KT (@) = [T (@) KTH (@) + O, )

From this follows | 1a (@) — Rﬁf_}y(@) = AT 1 (q2) — KAT 4 (q2) + Ole, ¢2)

23




Practical calculation of two-loop rational terms

0Rop = (AQ,F + 2521,7i-A1’p/7i) — (Ao + Z(dZWMZm + 57%177) ’Al,F/w)

1
= [dq1[d@ N(q, @) — N(a, ¢) Lgls(le()( )

B3=—q1—4
3 o
+i§1/dq}- [521,%-(%) - NO(g)

— (0715 (@0) + 021 (@) + OR 1, (a1) - N (q)] S X (D@l(q'))

/dQ1/dQQr1§ 222 l‘/\_/ﬂl"ﬂrl”l'“”m_Nﬂl”'ﬂrlyl'”wgl X
X1 X2 X3 gh...g@mgn.. . gralt)g)a <02)( DALY (3)

Ay
alzoagzoogzo(cjl M2)Nitor(gs — M2)Natoa(gg — N2)Nstos

43=—41—42
+ ...

= Computation with D-dim tensor integrals and differences of numerator coefficients
in Dy, = D and D,, = 4 dimensions

24




Renormalisation scheme dependence of two-loop rational counterterms

Master formula for two-loop amplitudes:

1 Y ~ (Y Y Y Y
RV Ay = Ao+ (820 + 6215+ 0RYY) - Ay gy + (020 + 9RY )
with
Y M M AY
5R;,r> = (5 5R;,FS> + (5)7 D1AY5R§,FS> + 5’C5,F |
rescaling of two-loop multiplicative renormalisation non-trivial remainder
rational term (with 1-poles) of one-loop rational term from 4-dim numerator

AY T . :
where 5/C§ T ) stems from the subtlety that the multiplicative renormalisation of a one-loop amplitude

A, r after projection to numerator dimension Dy, = 4 does not give the same result as a counterterm
insertion with subsequent projection to D, = 4:

6IC§%FY> = (ty) (D§AY>«41,F — §5Z$Y> "Al,F/y) # 0

But 5IC§AFY) can be expressed through one-loop renormalisation constants and a small set of
universal scheme-independent counterterms (presented in JHEP 10 (2020) 016 [arXiv:2007.03713]):
(AY)  _ (AY) ce-(X)
5IC2,F = %521% 5’C1,F
= Full renormalisation scheme dependence of two-loop rational terms available

25
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Two-loop rational terms for SU(N) and U(1) in a generic scheme

e Rational terms for a 1P| vertex function I' depend on the scale factor ¢° and the renormalisation
N .
constants Z, =1+ =72, (‘Zfr) 02y, for parameters x = o, mys, A and fields x = f, A, u

o Set the gauge parameter A = 1 (Feynman gauge), but keep generic renormalisation Z,, = %‘
e Express result in terms of Casimirs Cy, Cy and fundamental trace Ty and dimension N

Two-point function of a fermion f

Zl,OKl 7’27&2 . 2 Oés tE g S (P A (m
< ® < = 1 51'17?2 {k%( 47T> {57%/{&72{3%@1@2 - 67?’1(@',f)f mpy 5041042]}7
gauge group
structure
573% = — Cp,
R 7 61 5 1 (43 1087 59
SRL) :(02—00 °r C) (02—00 > C)
2,if 6 UF T 3g AT T gl Cr ) o e O T g CACE T N OF
_Cnl62 . 452 252 Similarly for 721" R\
F Lag 3 Lf 3 1.gp Imilarly Tor 16F) /%2 ff

Renormalisation scheme dependendent
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