

Two-loop Rational Terms

M. F. Zoller

in collaboration with J.-N. Lang, S. Pozzorini and H. Zhang

based on JHEP 05 (2020) 077 [arXiv:2001.11388], JHEP 10 (2020) 016 [arXiv:2007.03713], [arXiv:2107.10288]

Advances in Quantum Field Theory – 14.10.2021 – Dubna

Motivation for two-loop rational terms

- Theory predictions of O(1%) precision for LHC processes require NNLO calculations \Rightarrow Automation of numerical two-loop calculations highly desirable
- Higher-order calculations are usually performed in $D = 4 2\varepsilon$ dimensions \rightarrow Regularisation of divergences in Feynman integrals
- Numerical tools, such as OPENLOOPS [Buccioni et al], RECOLA [Actis et al], MADLOOP [Hirschi et al], construct the numerator of loop integrals in 4 dimensions
 - \rightarrow The D-4 dimensional numerator part needs to be restored
 - \rightarrow One loop: Universal rational counterterms of type R_2 [Ossola, Papadopoulos, Pittau] from the interplay of (D-4)-dimensional numerator parts with $\frac{1}{\varepsilon}$ UV poles
 - \rightarrow This talk: Two-loop rational terms of UV origin

Motivation to present two-loop rational terms here

Thanks to Kostja Chetyrkin for many inspiring QFT lessons, in particular about the R-operation and mass expansions.

Thanks and Congratulations to all the celebrated scientists at this workshop!

I. Rational terms at one loop

Generic one-loop diagram γ in $D = 4 - 2\varepsilon$ dimensions

(*D*-dim loop momentum \bar{q}_1 , masses m_k and 4-dim external momenta p_k)

Split *D*-dimensional numerator

$$\underbrace{\bar{\mathcal{N}}(\bar{q}_1)}_{D-\dim} = \underbrace{\mathcal{N}(q_1)}_{4-\dim} + \underbrace{\tilde{\mathcal{N}}(\bar{q}_1)}_{(D-4)-\dim} \quad \text{with} \begin{cases} \bar{q}_i &= q_i + \tilde{q}_i \\ \bar{\gamma}^{\bar{\mu}} &= \gamma^{\mu} + \tilde{\gamma}^{\bar{\mu}} \\ \bar{g}^{\bar{\mu}\bar{\nu}} &= g^{\mu\nu} + \tilde{g}^{\bar{\mu}\bar{\nu}} \end{cases}$$

$$\Rightarrow \bar{\mathcal{A}}_{1,\gamma} = \mathcal{A}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \qquad \text{with} \qquad \delta \mathcal{R}_{1,\gamma} = \int \mathrm{d}\bar{q}_1 \, \frac{\tilde{N}(\bar{q}_1)}{D_0(\bar{q}_1) \cdots D_{N-1}(\bar{q})},$$

 \Rightarrow Interaction of \tilde{N} with $\frac{1}{\epsilon}$ UV poles leads to a finite set of universal local counterterms $\delta \mathcal{R}_{1,\gamma}$ in any renormalisable theory [Ossola, Papadopoulos, Pittau]

IR divergences do not generate rational terms at one loop [Bredensetein, Denner, Dittmaier, Pozzorini]

Tadpole decomposition

Capture UV divergences via tadpole decomposition of propagator denominators $D_k = (\bar{q}_1 + p_k)^2 - m_k^2$ with one auxiliary mass scale M^2 [Chetyrkin, Misiak, Münz]

$$\frac{1}{\frac{D_k(\bar{q}_1)}{\sim \frac{1}{\bar{q}_1^2}}} = \frac{1}{\underbrace{\frac{\bar{q}_1^2 - M^2}{\bar{q}_1^2 - M^2}}_{\sim \frac{1}{\bar{q}_1^2}} + \underbrace{\frac{\Delta_k(\bar{q}_1)}{\bar{q}_1^2 - M^2}}_{\sim \frac{1}{\bar{q}_1^3}} - \underbrace{\frac{1}{D_k(\bar{q}_1)}}_{\sim \frac{1}{\bar{q}_1^3}}$$

with polynomial in external momenta and masses $\Delta_k(\bar{q}_1) = -2\bar{q}_1 \cdot p_k - p_k^2 + m_k^2 - M^2$

Recursive application \rightarrow **Tadpole expansion** up to degree of divergence X and UV-finite remainder:

$$\frac{1}{D_k(\bar{q}_1)} = \left(\mathbf{S}_X^{(1)} + \mathbf{F}_X^{(1)}\right) \frac{1}{D_k(\bar{q}_1)} := \sum_{\sigma=0}^X \frac{\left[\Delta_k(\bar{q}_1)\right]^\sigma}{\left(\bar{q}_1^2 - M^2\right)^{\sigma+1}} + \mathcal{O}(\frac{1}{\bar{q}_1^{3+X}})$$

Tadpole expansion for chains of propagators:

$$\mathbf{S}_{X}^{(i)} \frac{1}{D_{0}(\bar{q}_{i}) \cdots D_{N-1}(\bar{q}_{i})} = \sum_{\sigma=0}^{X} \frac{\Delta^{(\sigma)}(\bar{q}_{i})}{\left(\bar{q}_{i}^{2} - M^{2}\right)^{N+\sigma}}, \qquad \mathbf{F}_{X}^{(i)} = 1 - \mathbf{S}_{X}^{(i)}$$

where $\Delta^{(\sigma)}(\bar{q}_1)$ is a polynomial built from the Δ_k (k = 0, ..., N - 1).

 \Rightarrow Isolate UV-divergences in pure tadpole integrals with one scale M^2 and polynomial dependence on external momenta and masses.

Computing one-loop UV counterterms

One-loop diagram γ in D dimensions:

$$\bar{\mathcal{A}}_{1,\gamma} = \sum_{r=0}^{R} \left(\underbrace{\mathcal{N}_{\mu_1 \cdots \mu_r}}_{\text{4-dim}} + \underbrace{\tilde{\mathcal{N}}_{\bar{\mu}_1 \cdots \bar{\mu}_r}}_{\varepsilon\text{-dim}} \right) \underbrace{T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r}}_{D\text{-dim}} \quad \text{with} \quad T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r} = \int \mathrm{d}\bar{q}_1 \, \frac{\bar{q}_1^{\mu_1} \cdots \bar{q}_1^{\mu_r}}{D_0(\bar{q}_1) \cdots D_{N-1}(\bar{q}_1)}$$

Extract UV counterterm with K-operator (MS-like scheme):

$$f_L(\varepsilon) = \sum_{k=1}^L \frac{f_{L,k}}{\varepsilon^k} + f_{L,\text{finite}} \quad \Rightarrow \quad \mathbf{K} f_L(\varepsilon) = \sum_{k=1}^L \frac{f_{L,k}}{\varepsilon^k}$$

using the tadpole expansion $\mathbf{K} \, \bar{\mathcal{A}}_{1,\gamma} = \mathbf{K} \, \mathbf{S}_X^{(1)} \bar{\mathcal{A}}_{1,\gamma}$

$$\mathbf{K}\,\bar{\mathcal{A}}_{1,\gamma} = \mathbf{K}\,\sum_{r=0}^{R} \left(\mathcal{N}_{\mu_{1}\cdots\mu_{r}} + \tilde{\mathcal{N}}_{\bar{\mu}_{1}\cdots\bar{\mu}_{r}} \right) T_{N}^{\bar{\mu}_{1}\cdots\bar{\mu}_{r}} = \sum_{r=0}^{R} \mathcal{N}_{\mu_{1}\cdots\mu_{r}}\,\mathbf{K}\,T_{N}^{\bar{\mu}_{1}\cdots\bar{\mu}_{r}} = \mathbf{K}\,\mathcal{A}_{1,\gamma} = -\delta Z_{1,\gamma}$$

 \Rightarrow Extend this operator to also extract the interplay of $\tilde{\mathcal{N}}$ with the same UV poles

$$\bar{\mathbf{K}}\,\bar{\mathcal{A}}_{1,\gamma} := \sum_{r=0}^{R} \left(\mathcal{N}_{\mu_{1}\cdots\mu_{r}} + \tilde{\mathcal{N}}_{\mu_{1}\cdots\mu_{r}} \right) \mathbf{K}\,T_{N}^{\bar{\mu}_{1}\cdots\bar{\mu}_{r}} = -\delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}$$

 \Rightarrow Capture full UV pole contribution

One-loop rational terms from tadpole integrals

One-loop master formula for computing a renormalised *D***-dim amplitude**

$$\mathbf{R}\,\bar{\mathcal{A}}_{1,\gamma} = \bar{\mathcal{A}}_{1,\gamma} + \delta Z_{1,\gamma} = \mathcal{A}_{1,\gamma} + \delta Z_{1,\gamma} + \frac{\delta \mathcal{R}_{1,\gamma}}{\delta \mathcal{R}_{1,\gamma}}$$

Generic method to compute $\delta \mathcal{R}_{1,\gamma}$ from tadpole integrals with one (auxiliary) scale M^2 :

$$\delta \mathcal{R}_{1,\gamma} = (\bar{\mathbf{K}} - \mathbf{K})\bar{\mathcal{A}}_{1,\gamma} = \sum_{r=0}^{R} \left[\bar{\mathcal{N}}_{\bar{\mu}_{1}\cdots\bar{\mu}_{r}} - \mathcal{N}_{\mu_{1}\cdots\mu_{r}} \right] \mathbf{K} T_{N}^{\bar{\mu}_{1}\cdots\bar{\mu}_{r}}$$

using the tadpole expansion $\mathbf{K} T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r} = \mathbf{K} \mathbf{S}_X^{(1)} T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r} = \mathbf{K} \sum_{\sigma=0}^X \int \mathrm{d}\bar{q}_1 \frac{\bar{q}_1^{\mu_1} \cdots \bar{q}_1^{\mu_r} \Delta^{(\sigma)}}{(\bar{q}_1 - M^2)^{N+\sigma}}$

- Dependence on external momenta and masses resides solely in numerator $\left(\mathcal{N}(q_1) + \tilde{\mathcal{N}}(\bar{q}_1)\right)\Delta^{(\sigma)}$ in polynomial form \Rightarrow **Proof that** $\delta \mathcal{R}_{1,\gamma}$ is indeed a rational term.
- $\delta \mathcal{R}_{1,\gamma}$ stem from same poles as $\delta Z_{1,\gamma} \Rightarrow$ finite set of rational terms in any renormalisable theory.
- Results for $\delta Z_{1,\gamma}$ and $\delta \mathcal{R}_{1,\gamma}$ independent of M^2 since $\left[\mathbf{K} T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r} \mathbf{K} \mathbf{S}_X^{(1)} T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r} \right]$ is exact, and the l.h.s. (original denominators $D_k(\bar{q}_1)$) is M^2 -independent.

One-loop subdiagrams in two-loop diagrams

Numerator in D **dimension** (including \bar{q}_2 and Lorentz indices $\bar{\alpha} = (\bar{\alpha}_1, \bar{\alpha}_2)$)

$$\begin{split} \bar{\mathbf{K}} \,\bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}} &= \sum_{r=0}^{R} \left(\mathcal{N}_{\mu_{1}\cdots\mu_{r}}^{\bar{\alpha}}(\bar{q}_{2}) + \tilde{\mathcal{N}}_{\bar{\mu}_{1}\cdots\bar{\mu}_{r}}^{\bar{\alpha}}(\bar{q}_{2}) \right) \,\mathbf{K} \, T_{N}^{\bar{\mu}_{1}\cdots\bar{\mu}_{r}}(\bar{q}_{2}) \\ &= -\delta Z_{1,\gamma}^{\bar{\alpha}}(\bar{q}_{2}) + \delta \mathcal{R}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_{2}) \end{split}$$

Numerator in 4 dimensions (but *D*-dim \bar{q}_2 in denominator)

$$\bar{\mathbf{K}} \mathcal{A}_{1,\gamma}^{\alpha}(\bar{q}_2) = \sum_{r=0}^{R} \mathcal{N}_{\mu_1 \cdots \mu_r}^{\alpha}(q_2) \mathbf{K} T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r}(q_2 + \tilde{q}_2)$$

$$= -\delta Z_{1,\gamma}^{\alpha}(q_2) - \delta \tilde{Z}_{1,\gamma}^{\alpha}(\tilde{q}_2)$$

• $\delta Z^{\alpha}_{1,\gamma}(q_2) = -\sum_{r=0}^{R} \mathcal{N}^{\alpha}_{\mu_1 \cdots \mu_r}(q_2) \operatorname{K} T^{\mu_1 \cdots \mu_r}_N(q_2) \Rightarrow \operatorname{Projection of UV counterterm to 4-dim}$

• $\delta \tilde{Z}^{\alpha}_{1,\gamma}(\tilde{q}_2) = -\sum_{r=0}^R \mathcal{N}^{\alpha}_{\mu_1\cdots\mu_r}(q_2) \mathbf{K} \left(T_N^{\mu_1\cdots\mu_r}(q_2+\tilde{q}_2) \right) - T_N^{\mu_1\cdots\mu_r}(q_2) \right) \propto \frac{\tilde{q}_2^2}{\varepsilon}$

 $\Rightarrow \text{New term stemming from tadpole expansion of } T_N^{\mu_1 \cdots \mu_r}(q_2 + \tilde{q}_2)). \text{ For one propagator:} \\ \frac{1}{(\bar{q}_1 + q_2 + \tilde{q}_2)^2 - m^2} = \frac{1}{\bar{q}_1^2 - M^2} + \frac{-\left(q_2^2 + \tilde{q}_2^2\right) - 2\left(q_1 \cdot q_2 + \tilde{q}_1 \cdot \tilde{q}_2\right) + m^2 - M^2}{(\bar{q}_1^2 - M^2)^2} + \dots$

UV subtracted one-loop subdiagrams

Fully UV subtracted amplitudes in D and 4 dimensions can be identified

$$\underbrace{\bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2) - \bar{\mathbf{K}} \, \bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2)}_{D\text{-dim}} = \underbrace{\mathcal{A}_{1,\gamma}^{\alpha}(q_2) - \bar{\mathbf{K}} \, \mathcal{A}_{1,\gamma}^{\alpha}(q_2)}_{4\text{-dim}} + \mathcal{O}(\varepsilon, \tilde{q}_2)$$

 \Rightarrow Master formula for one-loop subdiagrams:

$$\underbrace{\bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2) + \delta Z_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2)}_{D\text{-dim renormalisation}} = \underbrace{\mathcal{A}_{1,\gamma}^{\alpha}(q_2) + \delta Z_{1,\gamma}^{\alpha}(q_2) + \delta \tilde{Z}_{1,\gamma}^{\alpha}(\bar{q}_2)}_{4\text{-dim renormalisation}} + \underbrace{\delta \mathcal{R}_{1,\gamma}^{\alpha}(\bar{q}_2)}_{(D-4)\text{-dim restored}} + \mathcal{O}(\varepsilon, \tilde{q}_2) \,.$$

Extra UV counterterm $\delta \tilde{Z}^{\alpha}_{1,\gamma}(\tilde{q}_2) \propto \frac{\tilde{q}_2^2}{\varepsilon} = \mathcal{O}(1)$ non-zero only for quadratic divergence

Example: Photon selfenergy (MS scheme)

$$\begin{split} \delta Z_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2) &= \left(\frac{\mathrm{i}\alpha}{4\pi}\right) \frac{4}{3\varepsilon} \left(\bar{q}_2^2 g^{\bar{\alpha}_1 \bar{\alpha}_2} - \bar{q}_2^{\bar{\alpha}_1} \bar{q}_2^{\bar{\alpha}_2}\right), \quad \delta Z_{1,\gamma}^{\alpha}(q_2) = \left(\frac{\mathrm{i}\alpha}{4\pi}\right) \frac{4}{3\varepsilon} \left(q_2^2 g^{\alpha_1 \alpha_2} - q_2^{\alpha_1} q_2^{\alpha_2}\right), \\ \delta \tilde{Z}_{1,\gamma}^{\alpha}(\bar{q}_2) &= \left(\frac{\mathrm{i}\alpha}{4\pi}\right) \frac{2}{3} \frac{\tilde{q}_2^2}{\varepsilon} g^{\alpha_1 \alpha_2}, \quad \delta \mathcal{R}_{1,\gamma}^{\alpha}(q_2) = \left(\frac{\mathrm{i}\alpha}{4\pi}\right) \frac{2}{3} q_2^2 g^{\alpha_1 \alpha_2} \end{split}$$

II. Rational terms at two loops

Generic irreducible two-loop diagram Γ consists of three chains $C_i(\bar{q}_i)$ and two vertices $\mathcal{V}_0, \mathcal{V}_1$

$$\bar{\mathcal{A}}_{2,\Gamma} = \underbrace{\begin{pmatrix} Q_1 & V_0 & q_2 \\ Q_3 & Q_2 \\ Q_4 & Q_3 \\ Q_5 & Q_6 \\ Q_6 & Q_6 \\ Q_7 & Q_7 \\ Q_7 & Q_7 \\ Q_7 & Q_$$

$$\mathcal{D}^{(i)}(\bar{q}_i) = D_0^{(i)}(\bar{q}_i) \cdots D_{N_i-1}^{(i)}(\bar{q}_i)$$
$$\bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) = \left[\bar{\mathcal{V}}_0 \bar{\mathcal{V}}_1\right] \cdot \prod_{i=1}^3 \bar{\mathcal{N}}^{(i)}(\bar{q}_i)\Big|_{\bar{q}_3 \to -(\bar{q}_1 + \bar{q}_2)}$$

Three subdiagrams γ_i from chains \mathcal{C}_j and \mathcal{C}_k

$$\bar{\mathcal{A}}_{1,\gamma_i}(\bar{q}_i) = \int \mathrm{d}\bar{q}_j \left. \frac{\left[\bar{\mathcal{V}}_0 \bar{\mathcal{V}}_1 \right] \cdot \bar{\mathcal{N}}^{(j)}(\bar{q}_j) \, \bar{\mathcal{N}}^{(k)}(\bar{q}_k)}{\mathcal{D}^{(j)}(\bar{q}_j) \, \mathcal{D}^{(k)}(\bar{q}_k)} \right|_{\bar{q}_k = -\bar{q}_i - \bar{q}_j}$$

Complements Γ/γ_i

$$\bar{\mathcal{A}}_{2,\Gamma} = \bar{\mathcal{A}}_{1,\gamma_i} \cdot \bar{\mathcal{A}}_{1,\Gamma/\gamma_i} = \int \mathrm{d}\bar{q}_i \,\bar{\mathcal{A}}_{1,\gamma_i}(\bar{q}_i) \,\cdot\, \frac{\bar{\mathcal{N}}^{(i)}(\bar{q}_i)}{\mathcal{D}^{(i)}(\bar{q}_i)}$$

 $\leftarrow \text{ denominators } D_a^{(i)}(\bar{q}_i) \, = \, (\bar{q}_i + p_{ia})^2 - m_{ia}^2$

- \Rightarrow Factorisation of chains
- $\leftarrow (i|jk) \text{ is a partition of (123)}$
- $$\begin{split} \leftarrow & \text{Superficial degree of divergence } X(\gamma_i) \\ & X(\gamma_i) \geq 0 \ \Rightarrow \textbf{Subdivergence of } \Gamma \\ & X(\Gamma) \geq 0 \ \Rightarrow \textbf{Global divergence of } \Gamma \end{split}$$
- \Rightarrow Factorisation of γ_i and Γ/γ_i

Renormalised *D*-dimensional amplitude

Renormalisation procedure based on R-operation [Bogoliubov, Parasiuk; Hepp; Zimmermann; Caswell, Kennedy]

$$\mathbf{R}\,\bar{\mathcal{A}}_{2,\Gamma} = \bar{\mathcal{A}}_{2,\Gamma} + \underbrace{\sum_{\gamma_i} \underbrace{\delta Z_{1,\gamma_i} \cdot \bar{\mathcal{A}}_{1,\Gamma/\gamma_i}}_{\text{subtract}}}_{\text{subdivergences}} + \underbrace{\delta Z_{2,\Gamma}}_{\text{subtract remaining}} \underbrace{\delta Z_{2,\Gamma}}_{\text{local divergence}} \quad \text{All amplitudes with} \\ numerator dimension}_{D_n = D}$$

R-operation: $\mathbf{R} \, \bar{\mathcal{A}}_{2,\Gamma} = (1 - \mathbf{K}_{sub} - \mathbf{K}_{loc}) \, \bar{\mathcal{A}}_{2,\Gamma}$

1. Subdivergences: $\mathbf{K}_{\mathrm{sub}} \, \bar{\mathcal{A}}_{2,\Gamma} = \sum_{\gamma_i} (\mathbf{K} \, \bar{\mathcal{A}}_{1,\gamma_i}) \cdot \bar{\mathcal{A}}_{1,\Gamma/\gamma_i}, \qquad \mathbf{K} \, \bar{\mathcal{A}}_{1,\gamma_i} = -\delta Z_{1,\gamma_i}(\bar{q}_i)$

2. Remaining divergence: $\mathbf{K}_{\text{loc}} \bar{\mathcal{A}}_{2,\Gamma} = \mathbf{K} (1 - \mathbf{K}_{\text{sub}}) \bar{\mathcal{A}}_{2,\Gamma} = -\delta Z_{2,\Gamma} \leftarrow \text{local counterterm}$

Linear operations wrt sums of diagrams or sums of terms in a single diagram, e.g. $\mathbf{K}_{sub} \left(\sum_{\sigma} \bar{\mathcal{A}}_{2,\Gamma_{\sigma}} \right) = \sum_{\sigma} \mathbf{K}_{sub} \bar{\mathcal{A}}_{2,\Gamma_{\sigma}}$

Goal: Computation of $R \bar{A}_{2,\Gamma}$ from amplitudes with numerator dimension $D_n = 4$

Master formula for computation of renormalised D-dimensional amplitude from amplitudes with loop numerators in $D_n = 4$

$$\mathbf{R}\,\bar{\mathcal{A}}_{2,\Gamma} = \mathcal{A}_{2,\Gamma} + \mathop{\scriptstyle\sum}\limits_{\gamma} \Big(\underbrace{\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma}}_{\text{subtract}} + \underbrace{\delta \mathcal{R}_{1,\gamma}}_{\text{restore}\,\tilde{\mathcal{N}}\text{-terms}} \Big) \cdot \mathcal{A}_{1,\Gamma/\gamma} + \Big(\underbrace{\delta Z_{2,\Gamma}}_{\text{subtract remaining}} + \underbrace{\delta \mathcal{R}_{2,\Gamma}}_{\text{restore remaining}} \Big)$$

- Amplitudes on rhs computed with numerators $\mathcal{N}(q_1, q_2) = \bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) \Big|_{\bar{q}^{\bar{\mu}\bar{\nu}} \to q^{\mu\nu}, \ \bar{\gamma}^{\bar{\mu}} \to \gamma^{\mu}, \ \bar{q}_i \to q_i}$
- Subtract (sub-)divergences and restore $\tilde{\mathcal{N}}$ -terms (from subdiagrams and a remaining global) stemming from $\bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) = \mathcal{N}(q_1, q_2) + \tilde{\mathcal{N}}(\bar{q}_1, \bar{q}_2)$

The master formula implicitly defines

$$\frac{\delta \mathcal{R}_{2,\Gamma}}{\delta \mathcal{R}_{2,\Gamma}} = \underbrace{\left(\bar{\mathcal{A}}_{2,\Gamma} + \sum_{\gamma} \delta Z_{1,\gamma} \cdot \bar{\mathcal{A}}_{1,\Gamma/\gamma}\right)}_{\text{computed in } D_{n} = D} - \underbrace{\left(\mathcal{A}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}\right) \cdot \mathcal{A}_{1,\Gamma/\gamma}\right)}_{\text{computed in } D_{n} = 4}$$

To be shown in the following:

- $\delta \mathcal{R}_{2,\Gamma}$ is a rational term.
- In renormalisable theories there is a **finite set** of $\delta \mathcal{R}_{2,\Gamma} \neq 0$.
- Generic method to compute $\delta \mathcal{R}_{2,\Gamma}$ once and for all.

Case 1: Two-loop diagrams with no global divergence

Superficial degree of divergence of two-loop diagram $X(\Gamma) < 0$ \Rightarrow At most one subdivergence, i.e. one subdiagram γ with $X(\gamma) \ge 0$ $\mathbf{R}\,\bar{\mathcal{A}}_{2,\Gamma} = \underbrace{(1-\mathbf{K})\,\bar{\mathcal{A}}_{1,\gamma}}_{\text{divergence subtracted no divergence}} \cdot \underbrace{\bar{\mathcal{A}}_{1,\Gamma/\gamma}}_{\text{no divergence}} \stackrel{\text{e.g.}}{=} \left[\begin{array}{c} & & \\ & &$ $= \left(\bar{\mathcal{A}}_{1,\gamma} + \delta Z_{1,\gamma}\right) \cdot \mathcal{A}_{1,\Gamma/\gamma} + \mathcal{O}(\varepsilon)$ \leftarrow Project finite chain to $D_{\rm n} = 4$ $= \left(\mathcal{A}_{1,\gamma} + \delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \cdot \mathcal{A}_{1,\Gamma/\gamma} + \mathcal{O}(\varepsilon) \quad \leftarrow \text{Express UV subtracted}$ subdiagram in $D_n = 4$ $\stackrel{\text{e.g.}}{=} \left| \begin{array}{c} & & \\$

⇒ Two-loop $\tilde{\mathcal{N}}$ -contribution $\delta \mathcal{R}_{2,\Gamma} = 0$ and UV counterterm $\delta Z_{2,\Gamma} = 0$ for $X(\Gamma) < 0$. ⇒ Only globally divergent diagrams contribute to $\delta \mathcal{R}_{2,\Gamma}$ and $\delta Z_{2,\Gamma}$

 \Rightarrow Finite set of $\delta R_{2,\Gamma}$ and $\delta Z_{2,\Gamma}$ counterterms in any renormalisable theory

Case 2: Two-loop diagrams with a global divergence

Isolate all (sub)divergences via tadpole decomposition for every chain C_i (i = 1, 2, 3)

• Define for each chain C_i the maximum degree of divergence of the full diagram ($X(\Gamma) \leq 0$) and the two sub-diagrams γ_j, γ_k involving this chain $\leftarrow (i|jk)$ is a partition of (123)

$$X_i = \mathsf{Max}\left\{X(\Gamma), X(\gamma_j), X(\gamma_k)\right\}$$

• Decompose the diagram using the tadpole expansion operators (acting on individual chains)

$$\bar{\mathcal{A}}_{2,\Gamma} = \left(\mathbf{S}_{X_1}^{(1)} + \mathbf{F}_{X_1}^{(1)}\right) \left(\mathbf{S}_{X_2}^{(2)} + \mathbf{F}_{X_2}^{(2)}\right) \left(\mathbf{S}_{X_3}^{(3)} + \mathbf{F}_{X_3}^{(3)}\right) \bar{\mathcal{A}}_{2,\Gamma}$$

Case 2: Two-loop diagrams with a global divergence

Exploit the linearity of the R-operation (i.e. of the operators K, K_{sub}, K_{loc}) and apply the master formula (implicitly defining $\delta \mathcal{R}_{2,\Gamma}$)

$$\mathbf{R}\,\bar{\mathcal{A}}_{2,\Gamma} = \mathcal{A}_{2,\Gamma} + \sum_{\gamma_i} \left(\underbrace{\delta Z_{1,\gamma_i} + \delta \tilde{Z}_{1,\gamma_i}}_{\text{subtract}} + \underbrace{\delta \mathcal{R}_{1,\gamma_i}}_{\text{restore}\,\tilde{\mathcal{N}}\text{-terms}} \right) \cdot \mathcal{A}_{1,\Gamma/\gamma_i} + \left(\underbrace{\delta Z_{2,\Gamma}}_{\text{local divergence}} + \underbrace{\delta \mathcal{R}_{2,\Gamma}}_{\text{restore remaining}} \right)$$

to each term in

$$\mathbf{R}\bar{\mathcal{A}}_{2,\Gamma} = \mathbf{R}\left(\mathbf{S}_{X_{1}}^{(1)}\mathbf{S}_{X_{2}}^{(2)}\mathbf{S}_{X_{3}}^{(3)}\bar{\mathcal{A}}_{2,\Gamma}\right) + \sum_{i=1}^{3}\mathbf{R}\left(\mathbf{F}_{X_{i}}^{(i)}\mathbf{S}_{X_{j}}^{(j)}\mathbf{S}_{X_{k}}^{(k)}\bar{\mathcal{A}}_{2,\Gamma}\right) + \dots$$

case 1 \Rightarrow no contribution to $\delta \mathcal{R}_{2,\Gamma}$

 \Rightarrow Only the pure tadpole term $| \mathbf{S}_{X_1}^{(1)} \mathbf{S}_{X_2}^{(2)} \mathbf{S}_{X_2}^{(3)} \overline{\mathcal{A}}_{2,\Gamma} |$ contributes to $\delta \mathcal{R}_{2,\Gamma}$ and $\delta Z_{2,\Gamma}$

Two-loop rational terms from massive tadpoles with one scale M^2

Generic method to compute \tilde{N} -contribution

Example:

$$\delta \mathcal{R}_{2,\Gamma} = \begin{bmatrix} \mathbf{S}_{X_1}^{(1)} \mathbf{S}_{X_2}^{(2)} \mathbf{S}_{X_3}^{(3)} &+ \mathbf{S}_{X_1}^{(1)} &\otimes \delta Z_{1,\gamma_1} \end{bmatrix}_{D_n = D}$$

$$- \begin{bmatrix} \mathbf{S}_{X_1}^{(1)} \mathbf{S}_{X_2}^{(2)} \mathbf{S}_{X_3}^{(3)} &+ \mathbf{S}_{X_1}^{(1)} &\otimes \left(\delta Z_{1,\gamma_1} + \delta \tilde{Z}_{1,\gamma_1} + \delta \mathcal{R}_{1,\gamma_1}\right) \end{bmatrix}_{D_n = 4}$$

exploiting
$$\bar{\mathbf{K}} \begin{bmatrix} \mathbf{S}_{X_2}^{(2)} \mathbf{S}_{X_3}^{(3)} \overleftrightarrow{\mathbf{S}} \end{bmatrix}_{D_n = D} = -\delta Z_{1,\gamma_1} + \delta \mathcal{R}_{1,\gamma_1}, \quad \mathbf{K} \begin{bmatrix} \mathbf{S}_{X_2}^{(2)} \mathbf{S}_{X_3}^{(3)} \overleftrightarrow{\mathbf{S}} \end{bmatrix}_{D_n = 4} = -\delta Z_{1,\gamma_1}(q_2) - \delta \tilde{Z}_{1,\gamma_1}(\tilde{q}_2)$$

- Only numerators depend on external momenta and masses in polynomial form $\Rightarrow \delta \mathcal{R}_{2,\Gamma}$ is indeed a rational term
- Linearity of the R-operation allows generalisation to sets of diagrams
 - $\Rightarrow \textbf{Compute finite set of rational counterterms } \delta \mathcal{R}_{1,\Gamma}, \ \delta \mathcal{R}_{2,\Gamma}} \\ \text{and UV counterterms } \delta \tilde{Z}_{1,\Gamma}, \ \delta Z_{2,\Gamma}, \ \delta Z_{2,\Gamma} \text{ only for the 1PI UV-divergent} \\ \text{vertex functions } \Gamma \text{ of any renormalisable model once and for all!} \end{cases}$

Calculation of two-loop rational terms

- Implementation in the GEFICOM [Chetyrkin, M.Z.] framework: QGRAF [Noguira]
 - $\rightarrow \text{Q2E}+\text{EXP} \text{ [Seidesticker, Harlander, Steinhauser]} \rightarrow \text{FORM} \text{ [Vermaseren]} \text{ code} \rightarrow \text{MATAD} \text{ [Steinhauser]}$
- Checked with independent in-house calculation using IBP identities [Chetyrkin, Tkachov]

Example: $\mathcal{L}_{\text{QED}} = \bar{\psi} (i\gamma^{\mu}D_{\mu} - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2(1-\eta)}(\partial^{\mu}A_{\mu})^{2}$

Structure of rational term for fermion propagator in the $\overline{\mathrm{MS}}$ scheme :

$$\begin{split} \delta \hat{\mathcal{R}}_{1,ee}^{(\mathrm{p})} &= -1 + \frac{2}{3} \eta , \qquad \delta \hat{\mathcal{R}}_{2,ee}^{(\mathrm{p})} &= \left(\frac{19}{18} - \frac{143}{72} \eta + \frac{11}{30} \eta^2 \right) \frac{1}{\varepsilon} + \left(\frac{247}{108} + \frac{293}{864} \eta + \frac{391}{14400} \eta^2 \right) , \\ \delta \hat{\mathcal{R}}_{1,ee}^{(\mathrm{m})} &= 2 - \frac{1}{2} \eta , \qquad \delta \hat{\mathcal{R}}_{2,ee}^{(\mathrm{m})} &= \left(-11 + \frac{41}{9} \eta - \frac{1}{4} \eta^2 \right) \frac{1}{\varepsilon} + \left(-\frac{5}{6} - \frac{13}{54} \eta - \frac{7}{288} \eta^2 \right) \end{split}$$

- Interaction of $\tilde{\mathcal{N}}$ with $\frac{1}{\varepsilon^2}$ poles leads to rational terms $\propto \frac{1}{\varepsilon}$
- Rational terms depend on the gauge parameter
- In general: Non-trivial dependence on the renormalisation scheme \rightarrow Can be fully expressed in terms of the one-loop UV counterterms $\delta Z_{1,\alpha}, \delta Z_{1,ee}, \dots$

Status of two-loop rational terms

• Complete set of QED rational terms in MS schemes with full gauge parameter dependence $\mu \sim \sim \nu \quad \mu \sim \sim \checkmark$

JHEP 05 (2020) 077 [arXiv:2001.11388] [Pozzorini, Zhang, MZ]

Renormalisation scheme dependence of rational terms in any model, complete set of SU(N) and U(1) rational terms in a generic renormalisation scheme i_1, α_1 i_2, α_2 , a_1 a_2 a_1 a_2 a_1 a_2 , a_2 a_1 a_2 , a_2 a_1 a_2 , a_2 a_2 a_2 a_3 a_4 a_4 a_2 a_2 a_3 a_4 a_4 a_4 a_5 a_5

 $a_1 \frac{p_1}{\mu_1}$, $a_2 \frac{p_2}{\mu_2}$, $a_3 \frac{p_1}{\mu_1}$, $a_4 \frac{p_2}{\mu_1}$, $a_4 \frac{p_1}{\mu_1}$, $a_4 \frac{p_2}{\mu_2}$, $a_4 \frac{p_2}{\mu_1}$, $a_4 \frac{p_2}{$

JHEP 10 (2020) 016 [arXiv:2007.03713] [Lang, Pozzorini, Zhang, MZ]

Relation between rational terms in spontaneously broken models to the ones in the symmetric phase through vev expansions, complete set of rational terms for QCD corrections to the SM

Current and future projects:

- Two-loop rational terms for the full SM
- $\bullet~\mathcal{N}\text{-interactions}$ with IR poles

[arXiv:2107.10288] [Lang, Pozzorini, Zhang, MZ]

Summary

• Renormalised amplitudes in *D*-dimensions can be computed from amplitudes with 4-dimensional numerators and a finite set of universal UV and rational counterterm insertions:

$$\mathbf{R}\,\bar{\mathcal{A}}_{1,\gamma} = \mathcal{A}_{1,\gamma} + \delta Z_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \mathbf{R}\,\bar{\mathcal{A}}_{2,\Gamma} = \mathcal{A}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma} + \delta \tilde{Z}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \cdot \mathcal{A}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta \mathcal{R}_{2,\Gamma} \right)$$

 \Rightarrow Numerical implementation in automated tools, e.g. OpenLoops, possible

- Generic method to compute $\delta \mathcal{R}_{L,\gamma}$, $\delta \tilde{Z}_{1,\gamma}$ and $\delta Z_{L,\gamma}$ from simple tadpole integrals, which also serves as a proof that they are rational
- Complete renormalisation scheme dependence available
- Connection between rational terms in symmetric theories and their spontaneously broken counterparts through systematic vev expansions
- Full set of rational terms at two-loop level for
 - QED with full dependence on the gauge parameter
 - $SU({\cal N})$ and U(1) in any renormalisation scheme
 - QCD corrections to the SM $\,$

Backup

Details of the calculation

Generic formula for calculation of two-loop rational terms:

$$\begin{split} \delta \mathcal{R}_{2,\Gamma} &= \underbrace{\left(\mathbf{S}_{X_{1}}^{(1)}\mathbf{S}_{X_{2}}^{(2)}\mathbf{S}_{X_{3}}^{(3)}\bar{\mathcal{A}}_{2,\Gamma} + \sum_{\gamma_{i}}\delta Z_{1,\gamma_{i}}\cdot\mathbf{S}_{X_{i}}^{(i)}\bar{\mathcal{A}}_{1,\Gamma/\gamma_{i}}\right)}_{\text{Tadpole expansion in } D_{n} = D \text{ with subtracted subdivergences}} \\ &- \underbrace{\left(\mathbf{S}_{X_{1}}^{(1)}\mathbf{S}_{X_{2}}^{(2)}\mathbf{S}_{X_{3}}^{(3)}\mathcal{A}_{2,\Gamma} + \sum_{\gamma_{i}}\left(\delta Z_{1,\gamma_{i}} + \delta \bar{\mathcal{Z}}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma}\right)\cdot\mathbf{S}_{X_{i}}^{(i)}\mathcal{A}_{1,\Gamma/\gamma}\right)}_{\text{Tadpole expansion in } D_{n} = 4 \text{ with subtracted subdivergences and restored subdiagram rational terms}} \\ \text{exploiting } \bar{\mathbf{K}}\left(\mathbf{S}_{X_{j}}^{(j)}\mathbf{S}_{X_{k}}^{(k)}\bar{\mathcal{A}}_{1,\gamma_{i}}\right) = -\delta Z_{1,\gamma_{i}} + \delta \mathcal{R}_{1,\gamma_{i}}, \quad \mathbf{K}\left(\mathbf{S}_{X_{j}}^{(j)}\mathbf{S}_{X_{k}}^{(k)}\mathcal{A}_{1,\gamma_{i}}\right) = -\delta Z_{1,\gamma_{i}}(\bar{q}_{2}) \\ \text{Explicit structure:} \\ \delta \mathcal{R}_{2,\Gamma} = \int \mathrm{d}\bar{q}_{1}\int\mathrm{d}\bar{q}_{2}\underbrace{\left[\bar{\mathcal{N}}(\bar{q}_{1},\bar{q}_{2}) - \mathcal{N}(q_{1},q_{2})\right]}_{2\text{-loop numerator difference}} \underbrace{\prod_{i=1}^{3} \begin{bmatrix} X_{i} & \Delta_{i}^{(\sigma_{i})}(\bar{q}_{i}) \\ \sum_{i=0}^{2} \frac{\Delta_{i}^{(\sigma_{i})}(\bar{q}_{i})}{(\bar{q}_{i}^{2} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \sum_{i=1}^{3} \int\mathrm{d}\bar{q}_{i} \underbrace{\left[\delta Z_{1,\gamma_{i}}\cdot\bar{\mathcal{N}}^{(i)}(\bar{q}_{i}) - \left(\delta Z_{1,\gamma_{i}} + \delta \tilde{Z}_{1,\gamma_{i}}(\bar{q}_{i}) + \delta \mathcal{R}_{1,\gamma_{i}}\right)\cdot\mathcal{N}^{(i)}(q_{i})}{(\bar{q}_{i}^{2} - M^{2})^{N_{i} + \sigma_{i}}} \\ + \sum_{i=1}^{3} \int\mathrm{d}\bar{q}_{i} \underbrace{\left[\delta Z_{1,\gamma_{i}}\cdot\bar{\mathcal{N}}^{(i)}(\bar{q}_{i}) - \left(\delta Z_{1,\gamma_{i}} + \delta \tilde{Z}_{1,\gamma_{i}}(\bar{q}_{i}) + \delta \mathcal{R}_{1,\gamma_{i}}\right)\cdot\mathcal{N}^{(i)}(q_{i})}{(\bar{q}_{i}^{2} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \frac{1\text{-loop numerator difference with CT insertions} \underbrace{\left[\delta Z_{1,\gamma_{i}}^{(i)} + \delta Z_{1,\gamma_{i}}^{(i)} + \delta \mathcal{R}_{1,\gamma_{i}}\right]}{(\bar{q}_{i}^{(i)} - (\bar{q}_{i}^{(i)} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \frac{1\text{-loop tadpole integral}}{(\bar{q}_{i}^{(i)} - (\bar{q}_{i}^{(i)} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \frac{1\text{-loop tadpole integral}}{(\bar{q}_{i}^{(i)} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \frac{1\text{-loop tadpole integral}}{(\bar{q}_{i}^{(i)} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \frac{1\text{-loop tadpole integral}}{(\bar{q}_{i}^{(i)} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \frac{1\text{-loop tadpole integral}}{(\bar{q}_{i}^{(i)} - M^{2})^{N_{i} + \sigma_{i}}} \\ - \frac{1\text{-loop tadpole integral}}{(\bar{q}_{i}^{(i)} - M^{2})^$$

Optimisations of the calculation of rational terms

The tadpole expansion of a single propagator

 $\mathbf{S}_{X}^{(i)} \frac{1}{D_{k}(\bar{q}_{i})} = \sum_{\sigma=0}^{X} \frac{\left[\Delta_{k}(\bar{q}_{i})\right]^{\sigma}}{\left(\bar{q}_{1}^{2} - M^{2}\right)^{\sigma+1}} \quad \text{with} \quad \Delta_{k}(\bar{q}_{i}) = -p_{k}^{2} - 2\bar{q}_{i} \cdot p_{k} + m_{k}^{2} - M^{2}$

is designed such that $(1 - \mathbf{S}_X^{(i)}) \frac{1}{D_k(\bar{q}_i)} \leq \mathcal{O}\left(\frac{1}{\bar{q}_i^{X+1}}\right)$. But it contains different orders of \bar{q}_i \Rightarrow Potentially many finite terms generated, which cancel in the difference

$$\delta \mathcal{R}_{2,\Gamma} = \mathbf{S}_{X_1}^{(1)} \mathbf{S}_{X_2}^{(2)} \mathbf{S}_{X_3}^{(3)} \left(\bar{\mathcal{A}}_{2,\Gamma} - \mathcal{A}_{2,\Gamma} \right) + \dots$$

Optimisations (for details see JHEP 10 (2020) 016 [arXiv:2007.03713]) [Lang, Pozzorini, Zhang, MZ]

- Power counting in external momenta and masses \Rightarrow Restriction to mass dimension of the result
- Power counting in loop momenta $\bar{q}_i \Rightarrow$ Discard terms without UV (sub)divergences
- Taylor expansion trick:
 - \circ Add the auxiliary mass M^2 in every propagator denominator D_k by hand
 - Generate the relevant terms of the tadpole expansion through a Taylor expansion in external masses and propagators
 - \circ Perform a separate M^2 -expansion **or** use the M^2 -independence of the result to construct auxiliary M^2 -counterterms order by order.

Reducible one-loop diagrams

Generic unrenormalised amplitude of a one-loop diagram γ

$$\bar{\mathcal{M}}_{1,\gamma} = \overline{\mathcal{A}}_{1,\gamma}^{\sigma_1\dots\sigma_N} \prod_{i=1}^N [w_i]_{\sigma_i} ,$$

- Amplitude $\bar{\mathcal{A}}_{1,\gamma}$ of the 1PI amputated one-loop subdiagram of γ
- Factorised subtrees w_i (blue bubbles)

$$\mathbf{R}\,\bar{\mathcal{M}}_{1,\gamma} = \left(\mathbf{R}\,\bar{\mathcal{A}}_{1,\gamma}^{\sigma_1\dots\sigma_N}\right)\,\prod_{i=1}^N \,[w_i]_{\sigma_i} \,.$$

In the 't Hooft–Veltman scheme all tree structures w_i are in 4 dimensions.

- \Rightarrow External momenta and indices of the 1PI amplitude $\mathcal{A}_{1,\gamma}$ handled as 4-dimensional
- ⇒ **Tree structures do not generate rational terms** (even in other schemes due to factorisation)
- \Rightarrow Rational terms can be determined at the level of 1PI subdiagrams

Reducible two-loop amplitudes

$$\mathbf{R}\,\bar{\mathcal{A}}_{2,\Gamma} = \mathcal{A}_{2,\Gamma} + \sum_{\gamma_i} \left(\delta Z_{1,\gamma_i} + \delta \tilde{Z}_{1,\gamma} + \delta \mathcal{R}_{1,\gamma} \right) \cdot \mathcal{A}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma} + \delta \mathcal{R}_{2,\Gamma} \right)$$

which was derived for 1PI amplitudes is **applicable to any two-loop process** Γ due to the factorisation of external subtrees. Full diagram or process (sum of diagrams) Γ :

$$\mathbf{R}\,\bar{\mathcal{M}}_{2,\Gamma} = \left(\mathbf{R}\,\bar{\mathcal{A}}_{2,\Gamma}^{\sigma_1\cdots\sigma_N}\right)\,\prod_{i=1}^N [w_i]_{\sigma_i} \,.$$

⇒ Tree structures do not generate rational terms Similar for amplitudes composed of 1PI one-loop subdiagrams,

⇒ Finite set of rational counterterms stemming from 1PI UV-divergent vertex functions allow for two-loop computation of all processes

Proof of master formula for one-loop subdiagrams

Fully UV subtracted amplitude in *D* dimensions:

$$\bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2) - \bar{\mathbf{K}} \,\bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2) = \sum_{r=0}^R \bar{\mathcal{N}}_{\bar{\mu}_1 \cdots \bar{\mu}_r}^{\bar{\alpha}}(\bar{q}_2) \left[T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r}(\bar{q}_2) - \mathbf{K} \, T_N^{\bar{\mu}_1 \cdots \bar{\mu}_r}(\bar{q}_2) \right]$$

Fully UV subtracted amplitude in 4 dimensions:

$$\mathcal{A}_{1,\gamma}^{\alpha}(q_2) - \bar{\mathbf{K}} \,\mathcal{A}_{1,\gamma}^{\alpha}(q_2) = \sum_{r=0}^{R} \mathcal{N}_{\mu_1 \cdots \mu_r}^{\alpha}(q_2) \left[T_N^{\mu_1 \cdots \mu_r}(\bar{q}_2) - \mathbf{K} \, T_N^{\mu_1 \cdots \mu_r}(\bar{q}_2) \right]$$

Since all UV poles are cancelled in $\left[\ldots\right]$ we find

$$\left[T_{N}^{\bar{\mu}_{1}\cdots\bar{\mu}_{r}}(\bar{q}_{2}) - \mathbf{K} \, T_{N}^{\bar{\mu}_{1}\cdots\bar{\mu}_{r}}(\bar{q}_{2})\right] = \left[T_{N}^{\mu_{1}\cdots\mu_{r}}(\bar{q}_{2}) - \mathbf{K} \, T_{N}^{\mu_{1}\cdots\mu_{r}}(\bar{q}_{2})\right] + \mathcal{O}(\varepsilon,\tilde{q}_{2})$$

From this follow

$$| \bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2) - \bar{\mathbf{K}} \, \bar{\mathcal{A}}_{1,\gamma}^{\bar{\alpha}}(\bar{q}_2) = \mathcal{A}_{1,\gamma}^{\alpha}(q_2) - \bar{\mathbf{K}} \, \mathcal{A}_{1,\gamma}^{\alpha}(q_2) + \mathcal{O}(\varepsilon, \tilde{q}_2) |$$

Practical calculation of two-loop rational terms

$$\begin{split} \delta\mathcal{R}_{2,\Gamma} &= \left(\bar{\mathcal{A}}_{2,\Gamma} + \sum_{\gamma_i} \delta Z_{1,\gamma_i} \cdot \bar{\mathcal{A}}_{1,\Gamma/\gamma_i}\right) - \left(\mathcal{A}_{2,\Gamma} + \sum_{\gamma_i} \left(\delta Z_{1,\gamma_i} + \delta\tilde{Z}_{1,\gamma} + \delta\mathcal{R}_{1,\gamma}\right) \cdot \mathcal{A}_{1,\Gamma/\gamma_i}\right) \\ &= \int d\bar{q}_1 \int d\bar{q}_2 \left[\bar{\mathcal{N}}(\bar{q}_1, \bar{q}_2) - \mathcal{N}(q_1, q_2)\right] \left[\prod_{i=1}^3 \mathbf{S}_{X_i}^{(i)} \frac{1}{\mathcal{D}^{(i)}(\bar{q}_i)}\right]_{q_3 = -q_1 - q_2} \\ &+ \sum_{i=1}^3 \int d\bar{q}_i \left[\delta Z_{1,\gamma_i}(\bar{q}_i) \cdot \bar{\mathcal{N}}^{(i)}(\bar{q}_i) \\ &- \left(\delta Z_{1,\gamma_i}(q_i) + \delta\tilde{Z}_{1,\gamma_i}(\tilde{q}_i) + \delta\mathcal{R}_{1,\gamma_i}(q_i)\right) \cdot \mathcal{N}^{(i)}(q_i)\right] \mathbf{S}_{X_i}^{(i)} \left(\frac{1}{\mathcal{D}^{(i)}(\bar{q}_i)}\right) \\ &= \int d\bar{q}_1 \int d\bar{q}_2 \sum_{r_1 = 0}^{R_1} \sum_{r_2 = 0}^{R_2} \left[\bar{\mathcal{N}}_{\bar{\mu}_1 \cdots \bar{\mu}_{r_1} \bar{\nu}_1 \cdots \bar{\nu}_{r_2}} - \mathcal{N}_{\mu_1 \cdots \mu_{r_1} \nu_1 \cdots \nu_{r_2}}\right] \times \\ &\times \left[\sum_{r_1 = 0}^{X_1} \sum_{r_2 = 0}^{X_2} \sum_{r_3 = 0}^{X_1} \frac{\bar{q}_1^{\mu_1} \cdots \bar{q}_1^{\mu_{r_1}} \bar{q}_2^{\nu_1} \cdots \bar{q}_2^{\nu_{r_2}} \Delta_1^{(\sigma_1)}(\bar{q}_1) \Delta_2^{(\sigma_2)}(\bar{q}_2) \Delta_3^{(\sigma_3)}(\bar{q}_3)}{(\bar{q}_1^2 - M^2)^{N_1 + \sigma_1}(\bar{q}_2^2 - M^2)^{N_2 + \sigma_2}(\bar{q}_3^2 - M^2)^{N_3 + \sigma_3}}\right]_{q_3 = -q_1 - q_2} \\ &+ \ldots \end{split}$$

 \Rightarrow Computation with *D*-dim tensor integrals and differences of numerator coefficients in $D_n = D$ and $D_n = 4$ dimensions

Renormalisation scheme dependence of two-loop rational counterterms

Master formula for two-loop amplitudes:

$$\mathbf{R}^{(Y)} \bar{\mathcal{A}}_{2,\Gamma} = \mathcal{A}_{2,\Gamma} + \sum_{\gamma} \left(\delta Z_{1,\gamma}^{(Y)} + \delta \tilde{Z}_{1,\gamma}^{(Y)} + \delta \mathcal{R}_{1,\gamma}^{(Y)} \right) \cdot \mathcal{A}_{1,\Gamma/\gamma} + \left(\delta Z_{2,\Gamma}^{(Y)} + \delta \mathcal{R}_{2,\Gamma}^{(Y)} \right)$$
with
$$\delta \mathcal{R}_{2,\Gamma}^{(Y)} = \underbrace{(t_{Y}^{\varepsilon})^{2} \, \delta \mathcal{R}_{2,\Gamma}^{(\mathrm{MS})}}_{\text{rescaling of two-loop}} + \underbrace{(t_{Y}^{\varepsilon})^{2} \, D_{1}^{\Delta Y} \delta \mathcal{R}_{1,\Gamma}^{(\mathrm{MS})}}_{\text{of one-loop rational term}} + \underbrace{\delta \mathcal{K}_{2,\Gamma}^{(\Delta Y)}}_{\text{non-trivial remainder}}$$

where $\delta \mathcal{K}_{2,\Gamma}^{(\Delta Y)}$ stems from the subtlety that the multiplicative renormalisation of a one-loop amplitude $\mathcal{A}_{1,\Gamma}$ after projection to numerator dimension $D_n = 4$ does not give the same result as a counterterm insertion with subsequent projection to $D_n = 4$:

$$\delta \mathcal{K}_{2,\Gamma}^{(\Delta Y)} = (t_Y^{\varepsilon}) \left(D_1^{(\Delta Y)} \mathcal{A}_{1,\Gamma} - \sum_{\gamma} \delta Z_{1,\gamma}^{(\Delta Y)} \cdot \mathcal{A}_{1,\Gamma/\gamma} \right) \neq 0$$

But $\delta \mathcal{K}_{2,\Gamma}^{(\Delta Y)}$ can be expressed through one-loop renormalisation constants and a small set of universal scheme-independent counterterms (presented in JHEP 10 (2020) 016 [arXiv:2007.03713]):

$$\delta \mathcal{K}_{2,\Gamma}^{(\Delta Y)} = \sum_{\chi} \delta \mathcal{Z}_{1,\chi}^{(\Delta Y)} \, \delta \hat{\mathcal{K}}_{1,\Gamma}^{(\chi)}$$

 \Rightarrow Full renormalisation scheme dependence of two-loop rational terms available

Two-loop rational terms for SU(N) and U(1) in a generic scheme

- Rational terms for a 1PI vertex function Γ depend on the scale factor t^{ε} and the renormalisation constants $\mathcal{Z}_{\chi} = 1 + \sum_{k=1}^{\infty} \left(\frac{\alpha t^{\varepsilon}}{4\pi}\right)^k \delta \hat{\mathcal{Z}}_{k,\chi}$ for parameters $\chi = \alpha, m_f, \lambda$ and fields $\chi = f, A, u$
- Set the gauge parameter $\lambda = 1$ (Feynman gauge), but keep generic renormalisation $Z_{gp} = \frac{Z_A}{Z_\lambda}$
- Express result in terms of Casimirs $C_{
 m F}, C_{
 m A}$ and fundamental trace $T_{
 m F}$ and dimension N

Two-point function of a fermion f

$$\begin{split} i_{1}, & \alpha_{1} \\ & \swarrow \\ & & \swarrow \\ i_{2}, & \alpha_{2} \\ & = i \underbrace{\delta_{i_{1}i_{2}}}_{\text{gauge group}} \left\{ \sum_{k=1}^{2} \left(\frac{\alpha_{s} t^{\varepsilon}}{4\pi} \right)^{k} \left[\delta \hat{\mathcal{R}}_{k,\text{ff}}^{(\text{p})} \not{p}_{\alpha_{1}\alpha_{2}} + \delta \hat{\mathcal{R}}_{k,\text{ff}}^{(\text{m})} m_{f} \delta_{\alpha_{1}\alpha_{2}} \right] \right\}, \\ & \delta \hat{\mathcal{R}}_{1,\text{ff}}^{(\text{p})} = -C_{\text{F}}, \\ & \delta \hat{\mathcal{R}}_{2,\text{ff}}^{(\text{p})} = \left(\frac{7}{6} C_{\text{F}}^{2} - \frac{61}{36} C_{\text{A}} C_{\text{F}} + \frac{5}{9} T_{\text{F}} n_{f} C_{\text{F}} \right) \frac{1}{\varepsilon} + \left(\frac{43}{36} C_{\text{F}}^{2} - \frac{1087}{216} C_{\text{A}} C_{\text{F}} + \frac{59}{54} T_{\text{F}} n_{f} C_{\text{F}} \right) \\ & - C_{\text{F}} \left(\underbrace{\delta \hat{\mathcal{Z}}_{1,\alpha_{s}} + \frac{2}{3} \delta \hat{\mathcal{Z}}_{1,f} - \frac{2}{3} \delta \hat{\mathcal{Z}}_{1,\text{gp}}}_{\text{Renormalisation scheme dependendent}} \right) \\ \end{split}$$