Quantization of $2+1$ dimensional gravity and problem of central singularity in the BTZ black hole

Alexander Andrianov*
*This research was funded by the RSF, Grant No. 21-12-00020 in collaboration with Artem Starodubtsev and Yasser Elmahalawy

Faculty of Physics
Saint Petersburg State University

Advances in Quantum Field Theory, 70×7 magnificent, LTF JINR, Dubna
October 14, 2021

Introduction

- General relativity in $2+1$ dimensions coupled to point particles is exactly solvable at the classical and quantum levels (G. 't Hooft).
- We perform canonical analysis of a model in which gravity in $2+1$ spacetime dimensions with a negative cosmological constant is coupled to a cylindrically symmetric dust shell.
- We find canonical variables providing the global chart for the reduced phase space of the model.
- We perform quantization of the model in the vicinity of the horizon using momentum (Euler angle) representation and find the spectrum of shell radius.
- We also calculate quantum transition amplitudes between different regions of the Penrose diagram.

BTZ Black Hole

- The BTZ black hole, Bañados, Teitelboim, Zanelli 1992, in "Schwarzschild" coordinates is described by the metric

$$
\begin{equation*}
d s^{2}=-(N)^{2} d t^{2}+N^{-2} d r^{2}+R^{2} d \phi \tag{1}
\end{equation*}
$$

with lapse function

$$
\begin{equation*}
N=\left(1-2 m+\frac{R^{2}}{\ell^{2}}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

The parameters m is the ADM mass, which is related to the mass M in original BTZ conventions as $M=2 m-1$.

- The metric 1 satisfies the ordinary vacuum field equations of ($2+1$)-dimensional general relativity with a cosmological constant $\Lambda=-1 / \ell^{2}$.
- BTZ black holes are locally isometric to anti-de Sitter space $A D S^{2}$.

Action principle

- The basic variable is $\mathrm{SO}(2,2)$-connection $A_{\mu}^{A B}$, where $A, B=0.3$. Here $A_{\mu}^{3 a}=e_{\mu}^{a} / l$ is the triad, where $I=1 / \sqrt{\Lambda}$, and $A_{\mu}^{a b}=\omega_{\mu}^{a b}$ is the Lorentzian connection, where $a, b=0 . .2$.
- The total action consists of gravity action in the Chern-Simons form and the shell action

$$
\begin{equation*}
S=\frac{l}{8 \pi} \int_{M} d^{3} x \epsilon^{\mu \nu \rho}\left\langle A_{\mu},\left(\partial_{\nu} A_{\rho}+\frac{2}{3} A_{\nu} A_{\rho}\right)\right\rangle+S_{\text {shell }} \tag{3}
\end{equation*}
$$

where $A_{\mu}=\Gamma_{A B} A_{\mu}^{A B}$ is so(2,2) connection, and \langle,$\rangle is a bilinear form$ on so $(2,2)$ algebra, the Newton constant G is taken to be 1 .

- The shell is discretized (represented as an ensemble of N particles)

$$
\begin{equation*}
S_{\text {shell }}=\sum_{i}^{N} \int_{I_{i}} \operatorname{Tr}\left(K_{i} A_{\mu}\right) d x^{\mu} \tag{4}
\end{equation*}
$$

where I_{i} is i-th particle worldline and $K_{i}=m_{i} \Gamma_{03}$ - a fixed element of so(2,2)-algebra, M_{i} is the mass of i-th particle.

Phase space reduction

- Cut spacetime into N regions (discs) each containing one particle and an outer region, containing no particles (Alekseev, Malkin)

- Apply the results of 't Hooft, Matschull, Welling for each particle: solve the constraints, plug the solution back into the action. Thus the symplectic form for the disk collapses to its boundary:

$$
\begin{equation*}
\Omega_{D_{i}}=\int_{\partial D_{i}} d \phi\left\langle\nabla_{\phi}\left(\delta g_{i} g_{i}^{-1}\right) \wedge \delta g_{i} g_{i}^{-1}\right\rangle \tag{5}
\end{equation*}
$$

Phase space reduction

- For cylindrically symmetric arrangement of the particles, the sum of the symplectic form for each particle is combined into a single form

$$
\begin{equation*}
\Omega_{\text {full }}=\left\langle\delta h_{0} h_{0}^{-1}, \wedge U^{-1} \delta U\right\rangle, \tag{6}
\end{equation*}
$$

where $U=\prod_{j=0}^{N} u_{i}$, the holonomy around the full shell, is composed from holonomies around particles, $u_{i}=g_{i}(0) \exp \left(M_{i} \Gamma_{12}\right) g_{i}(0)^{-1}$, and h_{0} is the translational part of $g_{0}(0)$.

- In the neighborhood of the horizon where $\delta h_{0} h_{0}^{-1} \ll 1$ the symplectic form simplifies further:

$$
\begin{equation*}
\Omega_{\text {full }}=\frac{1}{l}\left\langle\delta X, \wedge U^{-1} \delta U\right\rangle, \tag{7}
\end{equation*}
$$

where $X=/ \log \left(h_{0}\right)$.

- The holonomy U plays the role of momentum of the shell. It has two independent components: spacial rotation and boost in radial direction. It has $A D S^{2}$-geometry.
- U is subject to the Hamiltonian constraint.

Momentum space

- The holonomy U provides a global chart for the entire momentum space. It has $A D S^{2}$ geometry.

Figure: ADS-momentum space and its Figure. ADS momentum space and its four regions. (p_{-1}, p_{0}, p_{1} are coordinates of three dimensional flat space in which $A D S^{2}$ is embedded)

Figure: Corresponding four regions on the Penrose diagram

Hamiltonian constraint

- Deriving the constraint for U by making use of cylindrical symmetry:

$$
\begin{equation*}
U=\prod_{i=0}^{N} \underbrace{C_{i}^{-1}}_{\text {transport to the origin }} \underbrace{\exp \left(\frac{2 \pi M \Gamma^{12}}{N}\right)}_{\text {particle holonomy }} \underbrace{C_{i}}_{\text {transport back }} \tag{8}
\end{equation*}
$$

Here M is the overall bare mass of the shell, i is (discrete) angular variable, and

$$
\begin{equation*}
C_{i}=\exp \left(-\frac{2 \pi i}{N} \Gamma_{12}\right)\left(\sqrt{1+R^{2} / I^{2}} I+R / I \Gamma_{13}\right) \exp \left(\bar{\chi} \Gamma_{10}\right) \exp \left(\frac{2 \pi i}{N} \Gamma_{12}\right) \tag{9}
\end{equation*}
$$

- From the condition $\operatorname{Tr} U=\cos (\sqrt{1-2 m})$, where m is the ADM mass, one gets the Israel equation

$$
\begin{equation*}
M=\sqrt{1+R^{2} / R^{2}+\sinh ^{2} \bar{\chi}} \pm \sqrt{1-2 m+R^{2} / R^{2}+\sinh ^{2} \bar{\chi}} \tag{10}
\end{equation*}
$$

Hamiltonian constraint

- The holonomy $U \in A D S^{2}$ can give a global chart in terms of the Euler angles ρ, χ (rotation and boost). In terms of these variables we have two independent equations on the components of U :

$$
\begin{equation*}
\cos (\rho) \cosh (\chi)=\cos (\pi Q), \quad \sinh (\chi)=M \frac{\sinh \bar{\chi} \sin (\pi Q)}{\pi Q} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\sqrt{\left(1-M \sqrt{\cosh ^{2}(\bar{\chi})+\frac{R^{2}}{R^{2}}}\right)^{2}-(M \sinh (\bar{\chi}))^{2}} \tag{12}
\end{equation*}
$$

- In the limit $|Q| \ll 1$, which corresponds to $2 m-1 \ll 1, \bar{\chi}$ can be explicitly excluded to give the single Hamiltonian constraint

$$
\cos (\rho) \cosh (\chi)=
$$

$$
\begin{equation*}
\cos \left[\pi \sqrt{\left(1-M \sqrt{1+\sinh ^{2}(\chi) / M^{2}+\frac{R^{2}}{R^{2}}}\right)^{2}-(M \sinh (\chi))^{2}}\right] \tag{13}
\end{equation*}
$$

Quantization

- In the vicinity of the horizon, one can neglect curvature of coordinate space and hence momentum non-commutativity. The states in momentum representation are given by commutative functions of U :

$$
\begin{equation*}
\Psi(U)=\Psi(\rho, \chi) \tag{14}
\end{equation*}
$$

- The scalar product is

$$
\begin{equation*}
\langle\Phi, \Psi\rangle=\frac{1}{\pi} \int \sinh (2 \chi) d \rho d \chi \Phi(\rho, \chi)^{*} \Psi(\rho, \chi) \tag{15}
\end{equation*}
$$

- Time is canonically conjugate to ρ, and the corresponding operator is

$$
\begin{equation*}
\hat{T}|\rho, \chi\rangle=i \hbar \frac{\partial}{\partial \rho}|\rho, \chi\rangle \tag{16}
\end{equation*}
$$

its eigenstates are

$$
\begin{equation*}
|t ; \psi\rangle=\frac{1}{\pi} \int \sinh (2 \chi) d \rho d \chi \exp (i t \rho) \psi(\chi)|\rho, \chi\rangle \tag{17}
\end{equation*}
$$

where t is an integer. Time operator has a discrete spectrum:

$$
\begin{equation*}
\hat{T}|t ; \psi\rangle=t \hbar|t ; \psi\rangle \tag{18}
\end{equation*}
$$

Quantization

- The perimeterial radius of the shell, R, and coordinates of the shell w.r.t. the horizon, X^{a}, are related as $R=\sqrt{(2 m-1)\left(X^{a} X_{a}+I^{2}\right)}$. The invariant distance to the horizon, $X^{a} X_{a}$ is represented as the Beltrami-Laplace operator on our momentum space:

$$
\begin{equation*}
\hat{X}^{2}|t ; \psi\rangle=\hbar^{2}|t ; \Delta \psi\rangle, \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\left(\frac{1}{\sinh (2 \chi)} \frac{\partial}{\partial \chi} \sinh (2 \chi) \frac{\partial}{\partial \chi}+\frac{t^{2}}{\cosh ^{2}(\chi)}\right) . \tag{20}
\end{equation*}
$$

- For positive, i.e. spacelike X^{2} (outside the horizon) the spectrum is continuous, but separated from zero

$$
\begin{equation*}
\hat{X}^{2}|t, \lambda\rangle=2 \pi\left(\lambda^{2}+1\right) \hbar^{2}|t, \lambda\rangle, \tag{21}
\end{equation*}
$$

where λ is a real number.

- For negative, i.e. timelike X^{2} (inside the horizon) the spectrum is discrete and includes zero

$$
\begin{equation*}
\hat{X}^{2}|t, I\rangle=-2 \pi I(I+1) \hbar^{2}|t, I\rangle, \tag{22}
\end{equation*}
$$

where I is a non-negative integer.

Eigenstates

- The eigenfunctions for the discrete spectrum are obtained from ladder operators

$$
\begin{equation*}
\mathscr{L}_{ \pm}= \pm \exp (i \rho)\left(\frac{\partial}{\partial \chi} \pm i \tanh \chi \frac{\partial}{\partial \rho}\right) \tag{23}
\end{equation*}
$$

which satisfy

$$
\begin{equation*}
\left[\mathscr{L}_{+}, \mathscr{L}_{-}\right]=2 i \frac{\partial}{\partial \rho}, \quad\left[\mathscr{L}_{ \pm}, i \frac{\partial}{\partial \rho}\right]=\mathscr{L}_{ \pm} \tag{24}
\end{equation*}
$$

- And the wavefunction is obtained as $\mathscr{L}_{-} \psi_{t, t}=0$

$$
\begin{equation*}
\psi_{t, \ell}=\left(\mathscr{L}_{+}\right)^{t-\ell} \psi_{t, t}=\left(\mathscr{L}_{+}\right)^{t-\ell} \frac{\exp (i t \rho)}{(\cosh \chi)^{t+\frac{1}{2}}} \tag{25}
\end{equation*}
$$

- For a continuous spectrum, the wave solution has an asymptotic of a plane wave. The linear combination of the solution is chosen from the condition that there is a balance between incoming and outgoing waves.

Quantization (dynamics)

- The quantum version of the Hamiltonian constraint is a finite difference equation

$$
\begin{equation*}
\psi(t-1, \chi)+\psi(t+1, \chi)=H(\chi) \psi(t, \chi) \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
H(\chi)=\frac{\cos \left(\pi \sqrt{1+M^{2}-M \sqrt{1+\sinh (\chi)^{2} / M^{2}+R^{2} / /^{2}}}\right)}{\cosh (\chi)} \tag{27}
\end{equation*}
$$

This is Klein-Gordon-like equation for discrete time.

- The solution is

$$
\begin{equation*}
\psi(t+1, \chi)=\mathbf{U}(\chi) \psi(t, \chi) \tag{28}
\end{equation*}
$$

where $\mathbf{U}=H+\sqrt{H-1}$ - evolution operator.

Quantization (dynamics)

The transition amplitude from outside the horizon to inside the horizon, I \rightarrow II, and back, II $\rightarrow \mathrm{I}$, in one step in time is calculated numerically.

Figure: II \rightarrow I (curve B) vs. I \rightarrow II (curve A) relative transition rate.
II \rightarrow I transition rate is non-zero, but exponentially damped away from the horizon.

Conclusions (intermediate)

- We have quantum description of BTZ Black holes formation due to collapse of a dust shell in a near-horizon region.
- The shell radius has continuous spectrum outside the horizon and discrete inside.
- We evaluate transition amplitude between different regions of the Penrose diagram and find a possibility for quantum tunneling out of the black hole
- Away from the horizon, including central singularity point, momentum non-commutativity cannot be neglected. This will require a full-fledged quantum group technique (see below).
$\Lambda<0$, non-linear coordinate space, non-commutative momentum space.

Deformation with $q=\exp (\pi G \sqrt{|\Lambda|} \hbar)$
Coordinate space: $U_{q}(s u(1,1)): X_{ \pm}, H$, where H is time coordinate

$$
\begin{equation*}
q^{H / 2} X_{ \pm} q^{-H / 2}=q^{ \pm 1} X_{ \pm}, \quad\left[X_{+}, X_{-}\right]=\frac{q^{H}-q^{-H}}{q-q^{-1}} \tag{29}
\end{equation*}
$$

Its Casimir, $C_{2}=\left(q-q^{-1}\right)^{2} X^{+} X^{-}+q^{-1} q^{H}+q q^{-H}$ is the radial distance from the shell to the horizon.
Momentum space: $\operatorname{Fun}\left(S U_{q}(1,1)\right), a, b, c, d$

$$
\begin{equation*}
a=d^{*}, \quad b=q c^{*}, \quad a d-q b c=1 \tag{30}
\end{equation*}
$$

$$
\begin{gathered}
a b=q b a, \quad a c=q c a, \quad b d=q d b, \quad c d=q d c \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) b c
\end{gathered}
$$

With cylindrical symmetry $b=b^{*}, c=c^{*}, b=q c$.

Momentum representation

$$
\begin{equation*}
\Psi(a, b, c, d)=\sum \psi_{m n} d^{m} b^{n} \tag{31}
\end{equation*}
$$

(only two matrix entries are independent in cylindrically symmetric setting) Scalar product

$$
\begin{equation*}
\left\langle\Psi \mid \Psi^{\prime}\right\rangle=\int_{q} \Psi(a, b, c, d)^{*} \Psi^{\prime}(a, b, c, d) \tag{32}
\end{equation*}
$$

It is convergent if $m<0$ (correspondes to unitary representations of a non-compact group)

Coordinate operators and their spectra:

$$
\begin{gather*}
q^{H} d^{-m} b^{n}=q^{m} d^{-m} b^{n}, \tag{33}\\
X^{+} d^{-m} b^{n}=-q^{-m+n} d^{-m} n\left(d^{*}\right) b^{n-1}-\frac{q^{n}-1}{q-1} d^{-m-1} b^{n+1} \tag{34}\\
X^{-} d^{-m} b^{n}=-q^{-m+n} d^{-m} n\left(d^{*}\right) b^{n-1}
\end{gather*}
$$

Eigenstates of q^{H} and C_{2} :

$$
\begin{gather*}
\Psi_{m, m}=d^{-m}, \quad \Psi_{m, m+n}=\left(X^{+}\right)^{n} \Psi_{m, m} \tag{35}\\
q^{H} \Psi_{m, m+n}=q^{m+n} \Psi_{m, m+n}, C_{2} \Psi_{m, m+n}=\frac{q^{m}-q^{-m}}{q-q^{-1}} \frac{q^{m+1}-q^{-m-1}}{q-q^{-1}} \Psi_{m, m+n} \\
m=0 \ldots N, \quad n=0 \ldots N-m, \quad N=1 /(G \sqrt{|\Lambda|} \hbar) \tag{36}
\end{gather*}
$$

Inside the $\mathrm{BH} n$ and m vary within a finite range, \rightarrow Hilbert space is finite-dimensional

Dynamics

- Hamiltonian near $R=0$ singularity

$$
\begin{equation*}
\sqrt{a d^{-1}}+\sqrt{d a^{-1}}=H=2 \frac{\cos \left(\pi \sqrt{\left(1-M \sqrt{1+b^{2}}\right)^{2}-M^{2}\left(b^{2}\right)}\right)}{\sqrt{1+b^{2}}} \tag{37}
\end{equation*}
$$

- Evolution operator

$$
\begin{equation*}
U=H \pm \sqrt{\left(H^{2}-1\right)} \tag{38}
\end{equation*}
$$

- Transition amplitudes between singularity and near singularity states

$$
\begin{equation*}
\langle N-j, N-1| U|N, N\rangle \tag{39}
\end{equation*}
$$

where $N=1 /(G \sqrt{|\Lambda|} \hbar)$.

- Calculated numerically: This work is in progress

Conclusions (final)

- The Hilbert space of the shell inside the black hole is finite-dimensional, the spectrum of the shell radius is discrete and bounded
- Transition amplitudes between different shell radii, including $R=0$ singularity are everywhere finite

