Update on dielectron studies in BiBi@9.2

V. Riabov

Outline

- Background rejection (centralized production Request 11; minbias BiBi@9.2)
- New production (centralized production Request 13; minbias BiBi@9.2) and problems

Background rejection: single tracks

- Single track background rejection cuts:
 - $\checkmark~DCA_x,y,z$ parameterized as a function of $p_{T},$ centrality and η
 - \rightarrow 2-3 σ selections for primary electrons, rejection of secondaries and conversion electrons at R > R_{beam pipie}
 - \rightarrow observe narrower DCA distributions for electrons at $p_T < 250$ MeV/c
 - ✓ dE/dx parameterized vs p_T for e/π
 - \rightarrow 1-3 σ selections for electrons
 - \rightarrow 2 σ veto selections for pions
 - $\checkmark~d\phi,\,dz$ matching to TOF and $\beta~$ parameterized vs. p_T
 - \rightarrow 2-3 σ matching cuts for suppression of miss-association of TPC tracks to TOF signals
 - \rightarrow 2 σ cut on β for electron selection and rejection of hadrons
 - Achieved performance (driven by the detector performance, very limited potential for improvements):
 - ✓ Track selections: hits > 39, $|\eta| < 1$, $|DCA_x,y,z| < 3 \sigma$
 - ✓ e-ID selections: 2σ matching to TOF, 1- 2σ TPC-eID, 2σ TOF-eID

V. Riabov, PWG4-ECAL Meeting, 30.06.2021

Background rejection: pairs

- Background rejection based on pair cuts.
- Conversion rejection:
 - ✓ tightly identified e-tracks are paired with loosely identified e-tracks in the event to be tested against conversion hypothesis based on: Chi2 for the secondary vertex (SV), distance between the tracks in SV, PV-SV distance, invariant mass → variables are correlated, 2D cuts are used
 - \checkmark if a pair is consistent with a conversion pair hypothesis then both tracks are tagged and rejected
- Highly selective cuts → high multiplicity in central BiBi@9.2 collisions does not result in significant false rejection of electrons due to high combinatorics

- Rejection of conversion improves S/B by a factor of two
- Signal significance also improves

Background rejection: pairs

- Background rejection based on pair cuts.
- Dalitz rejection:
 - ✓ e-tracks are paired, if a pair invariant mass M_{inv} ≤ M_{cut} then both e-tracks are rejected as Dalitz candidates

- A cut of $M_{inv} > 100 \text{ MeV/c}^2$ improves the S/B and signal significance; further improvements in S/B with a tighter cut is at the expense of smaller statistical significance
- The cut is not selective, its efficiency strongly depends on the event multiplicity

Invariant mass distributions

- Invariant mass distribution with single track and pair rejection cuts:
 - ✓ reconstructed e⁺e⁻ pairs, true e⁺e⁻ pairs, e⁺e⁻ pairs with at least one track from conversion, e⁺e⁻ pairs with at least one track from π^0 Dalitz

- Background from conversion and Dalitz decays prevails even after background rejection based on pair cuts
- In many cases only one track from true conversion or Dalitz decay is really registered in the event → pair cuts are not efficient since there is only one partner is really measured and second one is missing

Pair cut efficiency

- Efficiency of the pair cuts can be improved by increasing the chance to register the second partner:
 - ✓ limit acceptance for the primary (tightly identified) e-track $\rightarrow \eta$ for tracks, event z-vertex
 - ✓ loosen e-ID cuts for a partner → nhits, η , DCA

- A factor of two improvement in S/B
- Improved signal statistical significance even with lower efficiency for the signals

Pair cut efficiency

• p_T differential study:

- New cuts do not limit the acceptance of the study, improvements are seen at all p_T 's
- S/B improves with increasing transverse momentum

New Monte Carlo production

- Request13: PWG4 dielectrons, 15M minbias BiBi@9.2
- Tracking and TOF performance is identical to "Request 11" production → confirmed by comparing DCA and TOF matching distributions, TOF e-ID performance, track reconstruction and e-ID efficiencies in the TPC, TOF and ECAL
- Aims at more realistic simulation of dE/dx in the TPC \rightarrow the only difference compared with "Request 11"
- Output data:
 - ✓ DSTs:

/eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp05-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp05-21-500ev

✓ MiniDSTs:

/eos/nica/mpd/sim/data/MiniDst/dst-BiBi-09.2GeV-mp05-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp05-21-500ev/eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp02-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp02-21-500ev/

✓ 30,000 DST files

dE/dx parameterization

- Selected tracks: ٠
 - \checkmark hits > 39 ✓ |η| < 1</p>

 \checkmark

- Parameterized dE/dx vs. momentum for electrons and pions
- Red and blue bands show 2σ selections for e^{\pm} and π^{\pm}

Efficiency and purity

- Selected tracks:
 - \checkmark hits > 39
 - ✓ |η| < 1</p>
 - ✓ $|DCA_x,y,z| \le 2.5 \sigma$
- eID selections:
 - $\checkmark~2\sigma$ matching to TOF
 - ✓ 1-2σ TPC-eID
 - ✓ 2σ TOF-eID

Closer look at dE/dx distributions

- Selected tracks:
 - \checkmark hits > 39
 - ✓ $|\eta| < 1$
 - ✓ $|DCA_x,y,z| \le 2.5 \sigma$
 - ✓ $p_T = 1 \text{ GeV/c}$

- Non-Gaussian distributions with new dE/dx results in much worse separation of electrons from pions and kaons
- Non-Gaussian tails contribute only very little to the width of dE/dx parameterizations
 → the parameterizations remain to be similar

Closer look at dE/dx distributions + TOF e-ID

- Selected tracks:
 - \checkmark hits > 39

✓ |η| < 1</p>

- eID selections: ✓ 2σ matching to TOF ✓ 2σ TOF-eID
- ✓ $|DCA_x,y,z| < 2.5 \sigma$
- ✓ $p_T = 1 \text{ GeV/c}$

Geant4 default

- Non-Gaussian distributions with new dE/dx results in much worse separation of electrons from pions
- Kaon and proton contributions are comparable after TOF e-PID

Conclusions

- Origin of the worse e-purity in "Request 13" production is non-Gaussian tails in dE/dx distributions measured for hadrons and electrons
- e-purity achieved with e-ID cuts 'ala STAR' is not consistent with results reported by STAR
- Which of the dE/dx calculations is more correct, "Request 11" vs. "Request 13" ???

BACKUP

V. Riabov, PWG4-ECAL Meeting, 30.06.2021