SUPER C-TAU FACTORY: PROJECT STATUS

Ivan Logashenko

Budker Institute of Nuclear Physics

Novosibirsk State University

Parameters

as of 2021

2

The overview

632.94 m			
60 mrad			
100 mm / 1 <i>mm</i>			
350 MHz			
1.5	2.5	3.5	
2	2	2	
292	328	262	
0.8	1.0	1.0	
	63 60 100 r 3 1.5 2 292 0.8	633.94 m 100 mm 100 mm	

DW

Super c-tau factory (SCTF) = e^+e^- collider with c.m. energy from 3 to 7 GeV + detector

Timeline

Crab waist collision scheme

Crab waist (P.Raimondi, 2006):

- Collision at large Piwinski angle $\phi = \frac{\sigma_z}{\sigma_x} \tan\left(\frac{\theta}{2}\right)$
- "Crab" sextupoles to suppress resonances

Tested at DAFNE:

Key element of all high-luminosity colliders:

- Super KEK-B
- FCC-ee
- CEPC
- SCTF

Lattice and layout 2021

Lattice and layout 2021

Full ring

Interaction region

Synergy with FCC-ee, CEPC, SKIF,...

E(MeV)	1500	2000	2500	3000	3500
Π (m)	632.94				
F _{RF} (MHz)	350				
q	740				
2θ (mrad)	60				
$\varepsilon_y/\varepsilon_x(\%)$	0.5				
$\overline{eta}_x^*/eta_y^*$ (mm)	100/1				
α	2.1×10^{-3}				
I(A)	2	2	2	2	2
$N_{e/bunch} \times 10^{-10}$	9	9	8	9	10
N _b	292	292	328	292	262
U_0 (keV)	130	260	465	773	1220
<i>V_{RF}</i> (k V)	1600	2000	2500	3500	5000
ν_s	0.0164	0.0159	0.0158	0.017	0.019
δ _{RF} (%)	1.9	1.8	1.7	1.7	1.9
$\sigma_e \times 10^3$ (SR/IBS+WG)	0.28/1	0.4/1.1	0.5/1.1	0.6/1.1	0.7/1.1
σ_s (mm) (SR/IBS+WG)	4/15	7/15	7/15	10/15	12/14
ε_x (nm) (SR/IBS+WG)	2.7/8.8	5/5.5	7/4.6	10/5.8	14/8.1
$L_{HG} \times 10^{-35} (cm^{-2}s^{-1})$	0.8	1	1	1	1
ξ _x	0.007	0.005	0.003	0.003	0.004
ξ _y	0.15	0.14	0.10	0.09	0.08
$ au_{\mathrm{Touschek}}/ au_{L}$ (s)	1600/2000	1800/1600	2300/1670	4000/1600	8300/1600

Polarization of electron beam

Three Siberian snakes are used to provide longitudinal polarization of e^- beam at IP

To decouple $R_x = -R_y$, 7 quadrupoles needed Solenoid spin rotation angle is $\pi/2$ $B_{sol} = 7$ T at $E_{beam} = 3.5$ GeV, L = 2.6 m

The detector

Brothers, sisters and cousins...

BES-3

Very similar 1% luminosity

Super B-factory (10.58 GeV) 5-10x luminosity

pp collisions

In-house (Novosibirsk) cousins

Detector requirements

- Momentum resolution $\sigma_p/p \le 0.4\%$ at 1 GeV
- Very symmetric and hermetic
- Able to detect soft tracks ($p_t \ge 50 \ MeV/c$)
 - Inner tracker should be able to handle 10⁴ tracks/cm²s
- Very good particle identification: $e/\mu/\pi/K$
 - π/K in the whole energy range, e.g. for $D\overline{D}$ mixing
 - μ/π up to 1.5 GeV, e.g. for $\tau \rightarrow \mu\gamma$ search
 - dE/dx better than 7%
- Able to detect γ from 10 MeV to 3 GeV, good π^0/γ separation
 - Calorimeter energy resolution $\sigma_E/E \leq 1.8\%$ at 1 GeV
 - Calorimeter time resolution $\sigma_t \leq 1$ ns
- Efficient "soft" trigger
- Ability to operate at high luminosity, up to 300 kHz at J/ψ

- 1. Vacuum pipe
- 2. Inner tracker
- 3. Drift chamber

4. PID

- 5. Calorimeter
- 6. SC magnet
- 7. Muon system

Inner tracker options

4-layer Si-strip

Cylindrical MPGD

Time Projection Chamber (TPC)

- Resolution similar to drift chamber ($\sim 100 \ \mu$)
- Sensitive to particles with low p (~50 MeV/c)
- Compatible with final focus constraints
- Able to handle high particle flux
- Approximate size:
 Ø (40-400) x 600 mm

Inter tracker: TPC (BINP)

CREMLIN PLUS

TPC advantages:

- Highest number of hits per track
- Great dE/dx measurement

Ability to operate in high flux (including reconstruction) have to proved

On the way to first prototype

Operation of large gas gap radial TPC to be verified

4

16

Material budget estimated taking into account different material choices for the mechanics, cathode and faraday cage. All these layouts require the design, construction and test of a C+RWELL prototype.

The prototype under discussion is based on the innovative concept of the **modular roof-tile shaped detector**.

Several sub-options are being developed. Parallel activity: endcap tracker disks for CMD-3 detector, based on micro-RWELL technology.

Main tracker: drift chamber

Measurement of momentum and dE/dx (PID)

- Spatial resolution ~100 μ
- Small cell
- Minimal material (reduce MS)
- Approximate size: Ø (400-1600) x 1800 mm

"Traditional" option BINP	"Beyond-traditional" option INFN
Babar, BES-3, Belle-2	KLOE, MEG-2, IDEA
Axial and stereo superlayers	Full stereo
Traditional dE/dx	dE/dx by cluster counting
Feed-through wiring	Robotic wiring

Drift chamber: "traditional" option (BINP)

- ~40000 wires
 - 11k sensitive, W-Rh(Au)
 - 29k field, Al(Au)
- Hexagonal cell, 6.3-7.5 mm
- 41 layers
- 60% He + 40% C₃H₈
- 330 ns drift time (1.5 T)

$$\frac{\sigma_{p_t}}{p_t} \approx \sqrt{0.21\%^2 p_t^2 + 0.31\%^2}$$
$$\approx 0.4\% \text{ at 1 GeV}$$

 $\frac{\sigma_{dE/dx}}{dE/dx} \approx 6.9\%$

I.Yu.Basok et al., NIM A1009 (2021) 165490

Drift chamber: TraPid option (INFN)

- ~141000 wires
 - 23k sensitive, W
 - 117k field, Al $(\rightarrow C)$
- Square cell, 7.2-9.1 mm
- 64 layers
- 90% He + 10% iC₄H₁₀

$$\frac{\sigma_{p_t}}{p_t} \approx \sqrt{0.078\%^2 p_t^2 + 0.18\%^2}$$
$$\approx 0.2\% \text{ at 1 GeV}$$
$$\frac{\sigma_{dN/dx}}{p_t} \approx 3.6\%$$

 $\frac{dN}{dx} \approx 5$

With room for improvement!

Measurement of individual clusters improves time and dE/dx resolution

Robotic wiring developed for MEG-2

Drift chamber: TraPid option (INFN)

INFN teams

INFN Bari

- M. Abbrescia R. Aly **N. De Filippis**
- D. Diacono
- G. Donvito
- W Elmetanawee
- G. laselli
- M. Maggi
- I. Margjeka
- A. Corvaglia
 G. Chiarello
 F. Cuna
 E. Gorini
 F. Grancagnolo
 A. Miccoli
 M. Panareo
 M. Primavera
 G. Tassielli
 A. Ventura

INFN Lecce

Mechanics, wiring, test beam, simulations...

BINP

Preamp ASIC, wire coating, simulations,...

Plan to create smaller-size DC for CMD-3 as a prototype

Particle identification

Requirements for PID system

- π/K separation > 4 σ up to 2.5-3.0 GeV/c TOF (BES-3): 3 σ at 0.9 GeV/c, DIRC (BaBar): 4 σ at 2.5 GeV/c ASHIPH (KEDR): 4 σ at 1.5 GeV/c
- μ/π suppression ~1/40 for to 0.5-1.2 GeV/c
- good μ/π separation at low momentum

Several option are being considered:

FARICH, ASHIPH, TOF, DIRC

PID: FARICH option (BINP)

Variable n allows to increase $N_{pe}~$ using thicker radiator without compromising $\sigma_{\Theta c}$

First detector: Belle-II (ARICH)

T.lijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70 A.Yu. Barnyakov, et al., NIM A 732 (2013) 35

- Proximity focusing RICH
- 4-layer or gradient aerogel radiator
 n_{max} = 1.05 (1.07?), thickness 35 mm
- 21 m² total photon detector area
 - SiPMs in barrel (1ô m²)
 - MCP PMTs in endcaps (5 m²)
- ~10⁶ pixels with 4 mm pitch

2012 test beam: μ/π separation $\ge 3\sigma$ at P=1 GeV/c is demonstrated

PID: FDIRC options (JLU, Giessen)

FDIRC option

- Inspired by design from BaBar, SuperB, Belle II, and PANDA
- For PANDA $\sigma_{\Theta_c} \approx 2.1 \text{ mrad/track}$ is achieved for π/K with 3σ @4 GeV/c
- For SCTF $\sigma_{\Theta_c} \approx 0.7 \text{ mrad/track}$ is required for μ/π with 3σ @1.5 GeV/c

Main parameters:

- Synthetic fused silica: Barrel: 2×16 plates 110×32×1.5 cm
 Endcap: 2×4 sectors 1÷2 cm thick
- Focusing optics: innovative rad-hard 3-layer spherical lens
- MCP-PMT or SiPM with $\sigma_t \leq 100$ ps **Barrel**:
 - ► □2÷3 mm pixel
 - > $2.56 \div 1.14 \cdot 10^5$ readout channels **Endcap**:
 - ▶ 16×0.5 mm pixel
 - ▶ 2.88·10⁴ readout channels

 $\begin{array}{c} 2{\times}16 \text{ plates } 110{\times}32{\times}1.5 \text{ cm}^3 \\ \text{and } 2{\times}16 \text{ expansion volumes} \\ 32{\times}20{\times}10 \text{ cm}^3 \end{array}$

Giessen cosmic station (GCS)

Compact FEE for FARICH/DIRC

Simulated single photon pulse shapes from amplifier for different input resistance. ~ 22mV amplitude can be achieved.

DC-DC convertor board

- · goes behind the backplane
- 51×84 mm² size
- provides power to SiPMs, amplifiers, FPGA
- uses air inductive coils to operate in the detector magnetic field
- power, trigger & clock connectors

Calorimeter: pCsI option

- 7424 crystals, 16/18 X₀
 5248 in barrel
 2176 in endcap
- 5.5 x 5.5 x 30(34) cm
- pCsI+WLS+4 APD

This option is being prototyped and optimized

Magnet

- BINP is now building SC magnet for PANDA detector
 - Yoke is finished
 - Technology for cable production is being developed (in Russia)
- SCTF magnet is very similar in size and design

Muon system

- detect muons
 - mult.scat. of O(1cm)
- μ/π separation
- K_L detection

Baseline option:

scintillator strips + WLS fiber + SiPM (BELLE-2, CMD-3) 8-9 layers inside iron yoke

~1500 m²

SCTF: project status

28

Simulations

vCHEP 2021: https://indico.cern.ch/event/948465/contributions/4324160/ GRID 2021: https://indico.jinr.ru/event/1086/contributions/13280/

Super Tau-Charm Facility (STCF) in China

- Peaking luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV

- Possible locations:
- USTC, Hefei
- IMP, Huizhou
- Potential to increase luminosity and realize beam polarization
- A nature extension and a viable option for China accelerator project in the post BEPCII/BESIII era

1 ab⁻¹ data expected per year

2

There is regular communication between SCTF and STCF

Making SCTF a reality

Building the collaboration

Working groups

- Inner tracker
- Drift chamber
- PID
- Calorimeter
- Muon system
- Magnet
- Physics and simulations
- Computing
- DAQ and trigger
- Beam background
- Engineering

- International advisory committee (from 2017, 13 experts, Italy, CERN, USA, Russia, China, Spain, Germany, Mexica, Poland)
- Dedicated international workshops
 - December 2017, Novosibirsk
 - March 2018, Beijing
 - May 2018, Novosibirsk
 - December 2018, Orsay
 - November 2019, Moscow
 - November 2020, Hefei (online)
 - Fall 2021, Novosibirsk (online)

Collaborators are very welcome!

By the end 2021 we plan to establish a more formal proto-collaboration

CREMLINplus

- > Grant within Horizon 2020
- > From 2020 to 2024
- SCTF development is one of the working packages
 - Internationalization
 - Collider development
 - Software development
 - Detector development
- Partners:
 - 1. CERN
 - 2. INFN (Ferrara, Bari, Lecce, Frascati)
 - 3. IJCLab (Orsay)
 - 4. JLU (Giessen)
 - 5. BINP

SCTF in the global particle physics landscape

Precision experiments at electron-positron

collider Super Charm-Tau Factory

t persons:

Eugenie Levichev (E.B. Levichev@inp.nsk.su), Alexander Bo Yury Tikhonov (Iouri. Tikhonov@cern.ch), Ivan Logashenko

Abstract

This document decrifies research program of Builder IVE (No. to the next two discribe lawed on the Rights project of the Charm-Tac (GCT) Rectory, The SCT factory is designed to oper ager from 2 to 6 GeV with peak builders of the life" and "apdramation of the electron beam at the interaction region primetrial. The Riccing, equipped with a state-of-the-art in precision measurements of docays of tau legiton and hadrons's generations.

December 2018

Precision experiments at Super Charm-Tau Factory Letter of Interest for Snowmass 2021

M.N. Adawas¹ E.M. Bohlen, V.E. Binner, J. A.V. Bohen, J. A.V. Baguragalov, J. R. Bondr, J. F. Bondowd, V.L. Garraya, V. F. Darrisev, V. P. Durnien, V. P. Durninik, J. G. Brandol, S. Bohlen, B. D. Logashoko, B. Z. D. Lukis, J. N. Machako, D. A. Mannov, H. K. Korewski, J. R. Maron, M. B. Barray, J. R. Barray, J. K. Bonz, J. L. Barray, J. K. Barray, J. K. Korewski, J. B. M. Kunio, Y. K. Barray, J. K. Barray, J. K. Barray, J. K. Barray, V. B. Maron, Y. K. Barray, J. K. Barray, J. K. Barray, J. M. Sukharov, Y. L. Barne, Y. X. Korey, E. Y. K. Barray, J. K.

¹⁴Peredwagsentrum Jöhch, 3428 Jeich, Gersang ¹⁴Pengkan Justetz, Jasta Leide [Hustrenth, 23520] Gausen, Gersang Matte for Nachae Physics, Johanness Göterberg University, 35999 Matas, Germany ¹⁴CBI Belakustersium förskill, 64491 Journaled, Germany ¹⁶CBI Belakusterisma (Toskill, 64491 Journaled, Germany ¹⁶CBI Belakusterisma (Toskill, 64491 Journaled, Germany ¹⁶CBI Belakusterisma (Toskill, 64591 Journaled, Germany ¹⁶CBI Journaled, Germany ¹⁶CBI Journaled,

SnowMass2021

Eurostrategy

- > 2020: update of European Strategy in particle physics
- Role of SCTF in flavour sector is discussed in Physics Briefing book: <u>arXiv:1910.11775</u> [hep-ex]

Snowmass2021

- Snowmass 2021 Letter of Interest was submitted
- Signed by physicists from 38 organizations (10 from Russia)
- We are working on contributed papers (together with updating CDR)

Location: Sarov

Super c-tau factory is now planned to be located near Sarov as the key megascience research infrastructure of the new National Center for Physics and Mathematics

- National Center for Physics and Mathematics was established near Sarov at the end of 2020
- Sarov Branch of Moscow State University is already created
- Russian Research Institute for Experimental Physics (BHИИЭФ) and BINP are working with related government agencies and officials to get the official start of the project

Conclusion

- There is rich physics program of experiments at Super ctau factory
- Super c-tau factory is deeply integrated in the global landscape of particle physics
- The project is well developed
- SCTF is proposed to be built near Sarov as the part of recently established National Center of Physics and Mathematics
- International collaboration is vital for the success of the project

We hope to interest some of you to join the collaboration!

Backup slides

Machine-detector interface

