

Physics & MC meeting 7 July 2021

Reconstruction of D^o meson in SPD experiment

<u>V. Andreev</u>

Main vertex detector options

- 1. 2 configurations of silicon vertex detector were considered in CDR of SPD experiment
- 2. DSSD (c.t. = 300 mkm, 5 layers) = option = v0;
- 3. MAPS (c.t. = 50 mkm, 1,2,3 layers) + DSSD (c.t. = 300 mkm, 4,5 layers) => option=v3
- 4. Errors MAPS: u = v = 4 mkm (effective) DSSD: u(z) = 23 mkm, v(x) = 11 mkm (effective)
- 5. v3 option was considered in this study with connection of D^o meson reconstruction
- 6. SPDroot is used for simulation of vertex and tracker detector response
- 7. KFParticle package is used for reconstruction of V0 candidate

Selection cuts for D⁰→K-pi+

1. distance between 2 daughter particles (DOCA)

2. select tracks on the base of chi2 of track and primary reconstructed vertex

$$\chi^2_{prim} = \Delta \mathbf{r}^T (C_{track} + C_{PV})^{-1} \Delta \mathbf{r},$$

where Δr – distance between track and the primary vertex position, C_{track} is a covariance matrix of a track and C_{pv} is a covariance matrix of primary vertex

- 3. check L / dL decay length normalized on the error
- 4. θ angle of daughter particle (K⁻, pi+)
- 5. angle between V0 candidate and line connected primary and secondary vertex
- 6. Armenteros-Podolanski plot

Open charm selection (D⁰→K-pi+)

1. consider $D^0 \rightarrow K^- \pi^+$ decay (BR 3.9 %) => ct = 122.9 µm, M=1864,84 MeV/c²

- 2. cross-section MB ~35 mb (without elastic) and D^o production ~14 μ b
- 3. $\sim 2.5*10^3$ MB events and only 1 D^o event
- 4. ~6.4*10⁴ MB events and only 1 D⁰ event with $D^0 \rightarrow K^- \pi^+$ decay mode
- 5. events with $|x_{F}| > 0.2$ are more interesting in our case

Selection cuts for $D^0 \rightarrow K$ -pi+ (1-st step)

- 1. simulate 6000 D0 and 10000 MB events (without any cuts)
- 2. select (+-) pair with ideal particle identification (ID) for V0 candidate

- 3. cut V0 candidate momentum (p > 2.7 GeV/c) => MB (~33%) and D0 (~26%, with ~70% of D0 reconstruction efficiency)
- 4. Armenteros-Podolanski band cut (cut1 < alfa1 < cut2) => MB (~16.5%) and D0 (~44%)
- 5. Armentros-Podolanski plot, band+range cut (|afa2| < 0.5) => MB (~2.5%) and D0 (~29%)
- 6. Armenteros-Podoanski plot cuts + momentum => MB (\sim 0.4%) and D0 (\sim 13.5%)
- 7. need to increase MB statistics essentially

Armenteros-Podolaanski (without cut)

Armenteros-Podolanski (MB)

Armenteros-Podolanski plot (with band+range cut)

Next step of simulation

- 1. add some kinematic cuts on generator level
- 2. for D⁰ meson sample => momentum of D⁰ p > 2.6 GeV/c => \sim 2.5 times increasing statistics
- 3. for MB sample:
 - a) consider all possible (+-) pairs on generator level
 - b) if momentum of any (+-) pair > 2.6 GeV/c => go to the step
 - c) check band and range Armenteros-Podolanski cuts for each (+-) pair,
 - if any of pair takes cuts => take the event
 - d) all these selection cuts on generator level increase MB statistics \sim 95 times
- 4. 20000 of D^o mesons and 105000 MB events were simulated
- 5. effective number of events => \sim 50000 for D⁰ and \sim 10⁷ for MB
- 6. suggestion: at momentum p <= 2.5 GeV/c there is ideal particle ID, but p > 2.5 GeV/c all negative particles are considered as K- and all positive particle -> pi+
- 7. after applying V0 momentum cut (p>2.7 GeV/c) + band and range Armeteros-Podolanski cuts + invariant mass cut of V0, inside $3*\sigma$ ($\sigma \sim 0.020$ GeV/c²): (take cuts: => 4140 events from 10⁷ Minimum Bias and 6283 events from 5*10⁴ D0 events)

suppression efficiency =>~ $4.1*10^{-4}$ MB and selection efficiency ~12.6% for D0

- 8. as the result 6.4*10⁴ MB vs 1 D⁰ => ~27 MB events vs 0.126 D⁰ events inside 3* σ cuts (S/B ~0.48%)
- 9. need to find additional new cuts

Measured invariant mass vs true mass for (+-) pairs

- 1. measured invariant mass means that all negative particles with p>2.5 GeV/c are considered as K⁻ and all positive particles with p>2.5 GeV/c are considered as positive pions otherwise used the true mass hypothesis
- 2. red band means $3^*\sigma$ cuts around nominal D^o mass

Next important variables for selection (1)

Next important variables for selection (2)

dist between 2 tracks

- 1. minimum distance between secondary tracks in V0 candidate (left-top picture)
- 2. minimum distance of secondary tracks to primary vertex (bottom two pictures)

Applying additional selection cuts

- 1. check additional cuts L/dL >1.5 (>2.0) (>3.0) and cut on angle between V0 candidate and line connected primary vertex (PV) and secondary vertex (SV)
- 2. we received only 91 (55) (22) Minimum Bias from 10^7 simulated events and 2509 (2060) (1438) D^o from 50000 simulated events => suppression factor => ~9.1*10⁻⁶ (~5.5*10⁻⁶), (~2.2*10⁻⁶) for MB and selection efficiency ~5.0% (~4.1%), (~2.88%) for D0 mesons
- 3. result $6.4*10^4$ MB vs 1 D⁰ => ~0.58 (~0.35), (~0.14) Minimum Bias events vs ~0.050 (~0.041), (~0.0288) D⁰ events => ratio S/B => D⁰ / MB ~8.6% (~11.7%), (~20.4%)

Measured invariant mass vs true mass for (+-) pairs, after all selection cuts

1. measured invariant mass means that all negative particles with p>2.5 GeV/c are considered as K⁻ and all positive particles with p>2.5 GeV/c are considered as positive pions otherwise used the true mass hypothesis

- 2. red band means $3^*\sigma$ cuts around nominal D⁰ mass
- 3. point inside red area => wrong particle ID (additional input to background)

5. ratio S/B => D⁰ / MB: ideal => ~13% (~16.1%) (~22.5%); "real" => $\sim 8.6\%$ (~11.7%), (~20.4%)

- 1. set of cuts are considered for suppression MB events and selection of D0 mesons
- 2. these cuts provide $\sim 5\%$ ($\sim 4.1\%$) ($\sim 2.9\%$) reconstruction efficiency for D⁰ (for L/dL > 1.5, 2.0 and 3.0)
- 3. the signal-to-background ratio (S/B) for D^o inside $3*\sigma$ range is about $\sim 8.6\%$ ($\sim 11.7\%$) ($\sim 20.4\%$) for the MAPS+DSSD configuration (for L/dL > 1.5, 2.0 and 3.0)
- 3. also, need to take in mind that \sim 5-8% events in selected D0 sample is from wrong particles combination