Investigation of the spin-orbit strengths on the prediction of the closed shells for superheavy nuclei based on Two Center Shell Model

A.N.Bezbakh

Joint Institute for Nuclear Research

12 October 2021, Almaty, Kazakhstan

 The experimental study of heaviest nuclei can be guided by the theoretical analysis. JINR Superheavy Elements Factory ⇒ a new era in SHN research.

¹S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C 62, 047301 (2000)

²P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995) E State State

- The experimental study of heaviest nuclei can be guided by the theoretical analysis. JINR Superheavy Elements Factory ⇒ a new era in SHN research.
- The investigation of transfermium elements expands our knowledge of the single-particle structure, location of the shell closures, and decay modes of heaviest nuclei
- Increasing stability of nuclei approaching N = 184, and indication quite a large shell effects behind Z = 114 ⇒ Are valid the predictions of relativistic and nonrelativistic mean-field models in our case (Z = 120 126, N = 182 184)? Or the phenomenological model¹ (Z = 126)? Note: the mic-mac models² predict Z = 114.

¹S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C 62, 047301 (2000)

²P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data=Tables 59, 185 (1995) 重 👘 🧕 🔊 🤉

- The experimental study of heaviest nuclei can be guided by the theoretical analysis. JINR Superheavy Elements Factory ⇒ a new era in SHN research.
- The investigation of transfermium elements expands our knowledge of the single-particle structure, location of the shell closures, and decay modes of heaviest nuclei
- Increasing stability of nuclei approaching N = 184, and indication quite a large shell effects behind Z = 114 ⇒ Are valid the predictions of relativistic and nonrelativistic mean-field models in our case (Z = 120 126, N = 182 184)? Or the phenomenological model¹ (Z = 126)? Note: the mic-mac models² predict Z = 114.

¹S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C 62, 047301 (2000)

²P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data=Tables 59, 185 (1995) 重 👘 🧕 🔊 🤉

- The experimental study of heaviest nuclei can be guided by the theoretical analysis. JINR Superheavy Elements Factory ⇒ a new era in SHN research.
- The investigation of transfermium elements expands our knowledge of the single-particle structure, location of the shell closures, and decay modes of heaviest nuclei
- Increasing stability of nuclei approaching N = 184, and indication quite a large shell effects behind Z = 114 ⇒ Are valid the predictions of relativistic and nonrelativistic mean-field models in our case (Z = 120 126, N = 182 184)? Or the phenomenological model¹ (Z = 126)? Note: the mic-mac models² predict Z = 114.

Our Aim

To investigate the role of spin-orbital strengths on the position of the magic shell and how they affect the description of low-lying states

- ¹S. Liran, A. Marinov, and N. Zeldes, Phys. Rev. C 62, 047301 (2000)
- ²P. Möller, J.R. Nix, W.D. Myers, and W.J. Swiatecki, At. Data Nucl. Data=Tables **59**, 185 (1995) =

$$H = (-\hbar/2m)\nabla^2 + V(\rho, z) + V_{l,s} + V_{l^2}$$

- $\lambda = L/2R_0$,
- $\beta = a/b = \beta_1 = \beta_2$ the case,
- $\varepsilon = E_0/E' = 0$,
- $\eta = (A_1 A_2)/(A_1 + A_2) = 0;$

Other variables are fixed.

where the momentum-independent part is V(
ho,z) and the momentum-dependent part consists of

$$V_{ls} = -rac{2\hbar\kappa}{m\omega_0'} \left(
abla V imes \mathbf{p}
ight) \mathbf{s}$$

$$V_{l^2} = -\frac{\kappa\mu}{\hbar\omega_0'}l^2 + \frac{\kappa\mu}{\hbar\omega_0'}\frac{N(N+3)}{2}\delta_{if}$$

³J. Maruhn and W. Greiner, Z. Phys. A 251, 431 (1972)

Investigation of the spin-orbit strengths on the prediction of the closed she

In order to improve the description of spins and parities of the nuclear ground states, we introduce a weak dependence on (N - Z) in the parameters $\kappa_{n,p}$ and $\mu_{n,p}$. For the actinide and transactinide region we suggest⁴, ⁵:

$$\begin{split} \kappa_n &= -0.076 + 0.0058(N-Z) - 6.53 \times 10^{-5}(N-Z)^2 + 0.002A^{1/3} \\ \mu_n &= 1.598 - 0.0295(N-Z) + 3.036 \times 10^{-4}(N-Z)^2 - 0.095A^{1/3} \end{split}$$

and

$$\begin{aligned} \kappa_{p} &= 0.0383 + 0.00137 (N-Z) - 1.22 \times 10^{-5} (N-Z)^{2} - 0.003 A^{1/3} \\ \mu_{p} &= 0.335 + 0.01 (N-Z) - 9.367 \times 10^{-5} (N-Z)^{2} + 0.003 A^{1/3} \end{aligned}$$

With those Eqs. we are able to describe correctly the ground-state spins of many heavy nuclei treated.

Note that the introduced additional dependence on N - Z mainly supplies a better order of the single-particle levels near the Fermi surface.

⁴G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 81, 024320 (2010)

⁵A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev C 85, @14319 (2012) 🖹 👘 🚊 🛷 🔍 🔿

 $E = E_{LDM} + \delta E_{mic}$

- The Coulomb and surface energies
- The shell E_{sh} and pairing corrections

Note

The stability of SHN correlates with the shell correction energy E_{sh} in the ground state. The larger $|E_{sh}|$, the greater the stability of SHN with respect to spontaneous fission and α -decay.

$$H = (-\hbar/2m)\nabla^2 + V(\rho, z) + kV_{l,s} + V_{l^2}$$

In order to study the influence of spin-orbit (*sl*) strengths in the region of SHN with the modified TCSM, we take the *sl*-term as kV_{ls} and study how the results depend on the coefficient k varying from 0.8 to 1.2. The value k = 1 corresponds to the parameters defined in Eqs. for κ and μ .

Calculated results: Position of shell closure

k = 0.8 (squares), 1.0 (circles), and 1.2 (triangles)

The stability of the nuclei with Z > 120 decreases with increasing k

The strength of spin-orbit interaction is crucial to define the position of the shell closures in nuclei beyond Pb. The 20% variation of the spin-orbit strength can strongly shift the position of the minimum of E_{sh} .

Investigation of the spin-orbit strengths on the prediction of the closed she

Calculating the potential energy surface as a function of collective coordinates with the TCSM, we find the ground-state potential minimum in which the energies of the low-lying one-quasiparticle states are obtained.

$$\mathcal{E}_{\mu}=\sqrt{(e_{\mu}-e_{ extsf{F}})^2+\Delta^2}-\sqrt{(e_{\mu}^{\prime}-e_{ extsf{F}})^2+\Delta^2}$$

Single-particle states μ with energies e_{μ} , the pairing-energy gap parameter Δ , the Fermi energy e_F .

Calculated results: Dependence of one-quasiparticle spectra on spin-orbit strength

A.N.Bezbakh

Calculated results: Dependence of one-quasiparticle spectra on spin-orbit strength

exp.:https://www.nndc.bnl.gov

Calculated results: Dependence of one-quasiparticle spectra on spin-orbit strength

exp.:https://www.nndc.bnl.gov

k = 0.8 (squares), 1.0 (circles), and 1.2 (triangles)

Briefly

- The experimental energies, spins, and parities are well described (within 250 keV) with k = 1.0.
- The calculated results obtained at k = 0.8 and 1.2 are less consistent with the experimental data – the ground-state spins and parities can not be reproduced.
- In most cases, the one-quasiparticle spectra become denser with k = 0.8 or 1.2.
- At k = 1 we have the best description of low-lying one-quasiparticle states.

• As shown, the quality of the description of low-lying one-quasiparticle states crucially depends on the spin-orbit strength. The spin-orbit strength taken in the modified TCSM at *k* = 1 allows us to describe well the low-lying one-quasiparticle spectra in heavy nuclei.

⁶A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C **85**, 014319 (2012) ⁷G.G. Adamian, L.A. Malov, N.V. Antonenko, H. Lenske, K. Wang, and S.-G. Zhou, Fur. Phys. J. A **54**, 170

Investigation of the spin-orbit strengths on the prediction of the closed shell

- As shown, the quality of the description of low-lying one-quasiparticle states crucially depends on the spin-orbit strength. The spin-orbit strength taken in the modified TCSM at k = 1 allows us to describe well the low-lying one-quasiparticle spectra in heavy nuclei.
- At k = 0.8 and 1.2 the calculated spectra are less consistent with the experimental data. So the choice of the TCSM parameters in ⁶ was optimal.

⁶A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C **85**, 014319 (2012) ⁷G.G. Adamian, L.A. Malov, N.V. Antonenko, H. Lenske, K. Wang, and S.-G. Zhou, Eur. Phys. J. A **54**, 170

Investigation of the spin-orbit strengths on the prediction of the closed she

- As shown, the quality of the description of low-lying one-quasiparticle states crucially depends on the spin-orbit strength. The spin-orbit strength taken in the modified TCSM at k = 1 allows us to describe well the low-lying one-quasiparticle spectra in heavy nuclei.
- At k = 0.8 and 1.2 the calculated spectra are less consistent with the experimental data. So the choice of the TCSM parameters in ⁶ was optimal.
- At k = 1 the strongest shell effects are found for the nuclei with Z = 120 or 124 and 126 at N approaching 184. However, the variation of the value of E_{sh} in the isospin chains is relatively small, which confirms the results of self-consistent calculations ⁷

⁶A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C **85**, 014319 (2012) ⁷G.G. Adamian, L.A. Malov, N.V. Antonenko, H. Lenske, K. Wang, and S.-G. Zhou, Eur. Phys. J. A **54**, 170

- As shown, the quality of the description of low-lying one-quasiparticle states crucially depends on the spin-orbit strength. The spin-orbit strength taken in the modified TCSM at k = 1 allows us to describe well the low-lying one-quasiparticle spectra in heavy nuclei.
- At k = 0.8 and 1.2 the calculated spectra are less consistent with the experimental data. So the choice of the TCSM parameters in ⁶ was optimal.
- At k = 1 the strongest shell effects are found for the nuclei with Z = 120 or 124 and 126 at N approaching 184. However, the variation of the value of E_{sh} in the isospin chains is relatively small, which confirms the results of self-consistent calculations ⁷
- With decreasing spin-orbit strength (k = 0.8) the proton shell closure is shifted to Z = 126. For larger spin-orbit interaction (k = 1.2), the nuclei with Z = 114 are calculated to have the largest values of shell-correction energy.

⁶A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C **85**, 014319 (2012) ⁷G.G. Adamian, I. A. Malov, N.V. Antonenko, H. Lenske, K. Wang, and S.-G. Zhou, Fur. Phys. J. A **54**, 170

Investigation of the spin-orbit strengths on the prediction of the closed shell

- As shown, the quality of the description of low-lying one-quasiparticle states crucially depends on the spin-orbit strength. The spin-orbit strength taken in the modified TCSM at k = 1 allows us to describe well the low-lying one-quasiparticle spectra in heavy nuclei.
- At k = 0.8 and 1.2 the calculated spectra are less consistent with the experimental data. So the choice of the TCSM parameters in ⁶ was optimal.
- At k = 1 the strongest shell effects are found for the nuclei with Z = 120 or 124 and 126 at N approaching 184. However, the variation of the value of E_{ch} in the isospin chains is relatively small, which confirms the results of self-consistent calculations 7
- With decreasing spin-orbit strength (k = 0.8) the proton shell closure is shifted to Z = 126. For larger spin-orbit interaction (k = 1.2), the nuclei with Z = 114 are calculated to have the largest values of shell-correction energy.
- The shell effect at N = 184 is quite strong and interplays with proton shell effects. The shell effect at N = 174 is less pronounced in the calculations with in the TCSM.

⁶A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 85, 014319 (2012)

- As shown, the quality of the description of low-lying one-quasiparticle states crucially depends on the spin-orbit strength. The spin-orbit strength taken in the modified TCSM at k = 1 allows us to describe well the low-lying one-quasiparticle spectra in heavy nuclei.
- At k = 0.8 and 1.2 the calculated spectra are less consistent with the experimental data. So the choice of the TCSM parameters in ⁶ was optimal.
- At k = 1 the strongest shell effects are found for the nuclei with Z = 120 or 124 and 126 at N approaching 184. However, the variation of the value of E_{ch} in the isospin chains is relatively small, which confirms the results of self-consistent calculations 7
- With decreasing spin-orbit strength (k = 0.8) the proton shell closure is shifted to Z = 126. For larger spin-orbit interaction (k = 1.2), the nuclei with Z = 114 are calculated to have the largest values of shell-correction energy.
- The shell effect at N = 184 is quite strong and interplays with proton shell effects. The shell effect at N = 174 is less pronounced in the calculations with in the TCSM.
- The results obtained clearly demonstrate that the next doubly magic nucleus beyond 208 Pb is probably at $Z \ge 120$. Thus, our microscopic-macroscopic treatment qualitatively leads to results close to those of the self-consistent microscopic treatments.

⁶A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C 85, 014319 (2012)

⁷G.G. Adamian, L.A. Malov, N.V. Antonenko, H. Lenske, K. Wang, and S.-G. Zhou, Eur. Phys. J. A 5 Investigation of the spin-orbit strengths on the prediction of the closed she

A.N.Bezbakh

- As shown, the quality of the description of low-lying one-quasiparticle states crucially depends on the spin-orbit strength. The spin-orbit strength taken in the modified TCSM at k = 1 allows us to describe well the low-lying one-quasiparticle spectra in heavy nuclei.
- At k = 0.8 and 1.2 the calculated spectra are less consistent with the experimental data. So the choice of the TCSM parameters in ⁶ was optimal.
- At k = 1 the strongest shell effects are found for the nuclei with Z = 120 or 124 and 126 at N approaching 184. However, the variation of the value of E_{sh} in the isospin chains is relatively small, which confirms the results of self-consistent calculations ⁷
- With decreasing spin-orbit strength (k = 0.8) the proton shell closure is shifted to Z = 126. For larger spin-orbit interaction (k = 1.2), the nuclei with Z = 114 are calculated to have the largest values of shell-correction energy.
- The shell effect at N = 184 is quite strong and interplays with proton shell effects. The shell effect at N = 174 is less pronounced in the calculations with in the TCSM.
- The results obtained clearly demonstrate that the next doubly magic nucleus beyond ^{208}Pb is probably at $Z \geq 120$. Thus, our microscopic-macroscopic treatment qualitatively leads to results close to those of the self-consistent microscopic treatments.
- The shape of the island of stability is also defined by the spin-orbit strength. At k > 1, it is located between Z = 112 and 120, while at k ≤ 1 it is extended to Z = 126. The experiments on production of the Z = 120 nucleus could help us to answer the question of whether there is a shelf of stability beyond Z = 120.

⁶A.N. Kuzmina, G.G. Adamian, N.V. Antonenko, and W. Scheid, Phys. Rev. C **85**, 014319 (2012) ⁷G.G. Adamian, L.A. Malov, N.V. Antonenko, H. Lenske, K. Wang, and S.-G. Zhou, Fur. Phys. J. A **54**, 170

Investigation of the spin-orbit strengths on the prediction of the closed shell