Determination of the differential cross section of the reaction $pp \rightarrow \{pp\}_s \pi^0$ in the energy region of 1.5–2.5 GeV

Bota Baimurzinova

Dzelepov Laboratory of Nuclear Problems L.N. Gumilov Eurasian National University

The XXV International Scientific Conference of Young Scientists and Specialists (AYSS-2021)

7 октября 2021 г.

Introduction

The main method of studying strong interactions at intermediate energies: $NN \to NN\pi$

A classic example of this channel: $pp \rightarrow d\pi^+ \ (I = 0, S = 1, L = 0, 2)$

Spin isospin partner: $pp \rightarrow \{pp\}_s \pi^0 \ (I = 1, S = 0, L = 0),$ where $\{pp\}_s$ — diproton in final state 1S_0

O. Imambekov, Yu.N. Uzikov, Sov. J. Nucl. Phys. **52** 862 (1990) Formation of a singlet NN pair in the $p + d \rightarrow N + (NN)$ reaction at large momentum transfer. Forward Differential Cross Sections for the Reaction $pp \rightarrow d\pi^+$ in the Range 3.4–12.3 GeV/c

H. L. Anderson *et al.*, Phys. Rev. D **3** 1536 (1971)

Dibaryon resonances in the reaction $pp \to d\pi^+$

The second peak in the spectrum of forward differential cross section $pp \to \{pp\}_s \pi^0$?

V. Kurbatov *et al.*, Phys. Lett. B **661** 22 (2008)
V. Komarov *et al.*, Phys. Rev. C **93** 065206 (2016)

The first peak in the spectrum of forward differential cross section $pp \to \{pp\}_s \pi^0$

- ► ${}^{3}P_{2}d$ resonance parameters: $E_{R} = 2195 \pm 8 \text{ MeV}/c^{2},$ $\Gamma = 134 \pm 22 \text{ MeV}/c^{2}$ with $\chi^{2}/\text{ndf} = 8/6$
- ► ${}^{3}P_{0}s$ resonance parameters: $E_{R} = 2199 \pm 5 \text{ MeV}/c^{2},$ $\Gamma = 94 \pm 11 \text{ MeV}/c^{2}$ with the $\chi^{2}/\text{ndf} = 6.5/6$

V. Komarov *et al.*,Phys. Rev. C **93** 065206 (2016)

Known dibaryons

 D_{01}^+ deuteron $D_{10}^{+} {}^{1}S_{0}$ diproton, ${}^{1}S_{0} \{pp\}_{s}$ -pair $D_{10}^{-} {}^{3}P_{0} (pp \to \{pp\}_{s}\pi^{0})$ $D_{03}^+ {}^3D_3 (pd \rightarrow pd\pi\pi)$ $D_{12}^+ {}^1D_2 (pp \to d\pi^+)$ $D_{12}^{-} {}^{3}P_{2} (pp \rightarrow d\pi^{+} / \{pp\}_{s}\pi^{0})$ D_{21}^+ with charge 3 $(pp \to pp\pi^+\pi^-)$ $D_{13}^{-} {}^{3}F_{3} (pp \to d\pi^{+})$ D_{30} with charge 4 (???)

We are at the birth of dibaryon spectroscopy.

The second peak in the spectrum of forward differential cross section $pp \to \{pp\}_s \pi^0$?

V. Kurbatov *et al.*, Phys. Lett. B **661** 22 (2008)
V. Komarov *et al.*, Phys. Rev. C **93** 065206 (2016)

Experimental setup

Experimental setup

Synchrotron COSY

Spectrometer ANKE

Experimental setup

- ▶ Forward detector of the spectrometer ANKE at the synchrotron COSY–Jülich
- Proton/deuteron beam, hydrogen/deuterium target

Possible measurements

• Differential cross section $d\sigma/d\Omega$

Data processing and analysis

Measured vs. Calculated time dif of flight

- \blacktriangleright $\Delta {\rm TOF}_{\rm meas} {\rm using \ scintillation \ counters}$
- ▶ ΔTOF_{calc} using measured momenta and trajectories
- excitation energy of proton pair $E_{pp} < 3$ MeV

Missing mass squared distribution

Differential cross section angular dependence

Forward cross section energy dependence

Cross section slope energy dependence

Further plans

- ▶ Clarify the parameters of the second peak
- ▶ Consider its possible nature
- ▶ Publish the results

Thank you for your attention!