## QCD Equation of State at non- zero Magnetic Field using Dual QCD Formulation

#### Garima Punetha

Assistant Professor, Department of Physics, Govt Post Graduate College Berinag, Pithoragarh, India

October 12, 2021

Garima Punetha QCD Equation of State at non- zero Magnetic Field using Dual QCD Formula

周 ト イ ヨ ト イ ヨ ト



- Objectives
- Introduction
- Oual QCD with magnetic symmetry
- Equation of state for Quark Gluon Plasma using Dual QCD Hadronic Bag
- Study of strongly interacting Quark-Gluon Plasma
- Onclusion
- Acknowledgments

伺い イヨト イヨト

#### Objectives

Introduction Dual QCD with Magnetic Symmetry Equation of state for Quark Gluon Plasma using Dual QCD Hadronic Bag Study of strongly interacting Quark-Gluon Plasma Conclusion Acknowledgements

#### Objectives

- Investigation of the topological structure of the gauge theory and dual gauge formulation.
- Analyses of the dynamical structure of the resulting dual QCD vacuum, its flux tube formation and its connection with the color confinement.
- The phase transition from hadron to QGP phase in the entire  $T \mu$  plane has been investigated in presence of non-zero magnetic field.
- The associated thermodynamical and transport coefficient of the strongly interacting quark-gluon system have been investigated in an effective way in presence of non-zero magnetic field.

周 ト イ ヨ ト イ ヨ ト

## Fundamental building blocks of matter and their interactions



< 同 > < 三 > < 三 >

## Standard Model of Fundamental Forces

• Standard Model includes members of several classes of elementary particles.

• Fermions

#### • Gauge Bosons

#### • Higgs Bosons



Garima Punetha QCD Equation of State at non- zero Magnetic Field using Dual QCD Formula

・ 同 ト ・ ヨ ト ・ ヨ ト

## Standard Model of Fundamental Forces

Standard Model includes members of several classes of elementary particles.

Fermions

#### Gauge Bosons

#### • Higgs Bosons



くぼ ト く ヨ ト く ヨ ト

Objectives Introduction Dual QCD with Magnetic Symmetry Equation of state for Quark Gluon Plasma using Dual QCD Hadronic Bag Study of strongly interacting Quark-Gluon Plasma Study of strongly interacting Quark-Gluon Plasma Conclusion Acknowledgements

## Standard Model of Fundamental Forces

Standard Model includes members of several classes of elementary particles.

• Fermions

#### • Gauge Bosons

#### • Higgs Bosons



くぼ ト く ヨ ト く ヨ ト

## Two unsual properties of QCD

#### Confinement

- Low energy regime  $\Rightarrow$  Large distances
- Linear rising potential  $U(r) \propto r$

$$U(r) = -\frac{Q^2}{4\pi} \bigg[ \frac{e^{-m_B r}}{r} - \frac{1}{2} r ln(1 + \kappa_{QCD}^{(d)^2}) \bigg].$$
(1)



• Garima Punetha and H.C. Chandola: Euro Physics Letter, 116 (2016) 11001

### Two unsual properties of QCD

#### Confinement

- Low energy regime  $\Rightarrow$  Large distances
- Linear rising potential  $U(r) \propto r$

$$U(r) = -\frac{Q^2}{4\pi} \left[ \frac{e^{-m_B r}}{r} - \frac{1}{2} r ln(1 + \kappa_{QCD}^{(d)^2}) \right].$$
(1)



## • Garima Punetha and H.C. Chandola: Euro Physics Letter, 116 (2016) 11001



- D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343.
- D. J. Gross and F. Wilczek, Phys. Rev. D8 (1973) 3633.
- H. D. Politzer, Phys. Rep. 14 (1974) 129.

周 ト イ ヨ ト イ ヨ ト

## QCD Phase Diagram

In a QCD system at extremely high temperature or very high pressure the nuclear matter is expected to undergo a phase transition to a state called Quark-Gluon Plasma (QGP), identified as the deconfined dense state of matter.



Garima Punetha QCD Equation of State at non- zero Magnetic Field using Dual QCD Formula

## Dual QCD with Magnetic Symmetry

Based on the first principles of QCD a gauge invariant approach has been provided in order to provide a clear picture of QCD vacuum

• The mathematical foundation for the dual gauge theory comes from the observation that the non-Abelian gauge symmetry allow an extra internal symmetry called magnetic symmetry which restricts and reduces the dynamical degrees of the theory .

$$D_{\mu}\,\hat{m} = 0\,, \,\, i.e. \,\, (\,\partial_{\mu} + g\,\mathbf{W}_{\mu} \times\,)\,\hat{m} = 0\,.$$
 (3)

 The most general gauge potential which satisfies the above constraint is written as,

$$\mathbf{W}_{\mu} = A_{\mu} \, \hat{m} - g^{-1} \, ( \, \hat{m} \times \partial_{\mu} \, \hat{m} ), \tag{4}$$

where,  $A_{\mu}$  is the Abelian component of  $\mathbf{W}_{\mu}$  along  $\hat{m}$  and is unrestricted by the constraint.

#### The associated generalized field strength may then be written as,

$$\mathbf{G}_{\mu\nu} = (F_{\mu\nu} + B^{(d)}_{\mu\nu})\,\hat{m},\tag{5}$$

where

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu},$$
  
$$B^{(d)}_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} = g^{-1}(\hat{m} \times \partial_{\mu}\hat{m}), \qquad (6)$$

• The topological structure may be brought into dynamics in a dual symmetric way by imposing magnetic symmetry and the multiplet  $\hat{m}$  may be viewed to define the mapping,  $S_R^2 \rightarrow SU(2)/U(1)$ , where  $S_R^2$  is the two-dimensional sphere of three dimensional space and  $S^2$  is the group coset space fixed by  $\hat{m}$ .

> • Rotating the magnetic vector  $\hat{m}$  to a fix time independent direction by a gauge transformation leads to the value of gauge potential as,

$$\mathbf{W}_{\mu} \xrightarrow{U} g^{-1} \partial_{\mu} \beta \cos \alpha \hat{\xi}_{3}, \tag{7}$$

and the associated field strength takes the form as

$$\mathbf{G}_{\mu\nu} \stackrel{U}{\longrightarrow} (F_{\mu\nu} + B^{(d)}_{\mu\nu})\hat{\xi}_{3}.$$
(8)

 The dual QCD Lagrangian associated with the monopoles is expressed in the following form,

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^{2} - \frac{1}{4}B_{\mu\nu}^{2} - \frac{1}{2}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}_{r}\gamma^{\mu}[i\partial_{\mu} + \frac{1}{2}g(A_{\mu}^{(d)} + B_{\mu})]\psi_{r} + \bar{\psi}_{b}\gamma^{\mu}[i\partial_{\mu} + \frac{1}{2}g(A_{\mu}^{(d)} + B_{\mu})]\psi_{b} + |(\partial_{\mu} + i\frac{4\pi}{g}(A_{\mu} + B_{\mu}^{(d)}))\phi|^{2} - m_{0}(\bar{\psi}_{r}\psi_{r} + \bar{\psi}_{b}\psi_{b}) - V.$$
(9)

> The confinement mechanism of the QCD vacuum can be understood in absence of color electric sources (quarks) and the Lagrangian may be reduced in the following form,

$$\mathcal{L}_{d}^{(m)} = -\frac{1}{4}B_{\mu\nu}^{2} + |(\partial_{\mu} + i\frac{4\pi}{g}B_{\mu}^{(d)})\phi|^{2} - V(\phi\phi^{*}),$$
(10)  
$$V(\phi\phi^{*}) = 3\lambda\alpha_{s}^{-2}(\phi^{*}\phi - \phi_{0}^{2})^{2}.$$

Using the cylinderically symmetric form of the potentials,

$$\frac{d}{d\rho} \left[ \frac{1}{\rho} \frac{d}{d\rho} \left( \rho B(\rho) \right) \right] - \frac{8\pi}{g} \left( \frac{n}{\rho} + (4\pi\alpha_s^{-1})^{1/2} B(\rho) \right) \chi^2(\rho) = 0,$$
  
$$\frac{1}{\rho} \frac{d}{d\rho} \left( \rho \frac{d\chi(\rho)}{d\rho} \right) - \left[ \left( \frac{n}{\rho} + (4\pi\alpha_s^{-1})^{1/2} B(\rho) \right)^2 + \frac{96\pi^2}{g^4} \lambda \left( \chi^2 - \phi_0^2 \right) \right] \chi(\rho) = 0.$$
  
(11)

メロト メロト メヨト メヨト

W

• Utilizing the asymptotic solutions  $B(\rho) = -\frac{ng}{4\pi\rho}[1 + F(\rho)]$ , the energy per unit length of the resulting flux tube configuration may be derived in the following form,

$$k = 2\pi \int_{0}^{\infty} \rho d\rho \left[ \frac{n^{2}g^{2}}{32\pi^{2}\rho^{2}} \left( \frac{dF}{d\rho} \right)^{2} + \frac{n^{2}}{\rho^{2}} F^{2}(\rho)\chi^{2}(\rho) + \left( \frac{d\chi}{d\rho} \right)^{2} + 3\lambda \alpha_{s}^{-2} (\chi^{2} - \phi_{0}^{2})^{2} \right]$$
(12)  
here  $F(\rho) \xrightarrow{\rho \to \infty} C \sqrt{\rho} exp \left( -m_{B}\rho \right).$ 

< 回 > < 三 > < 三 >

> • The numerical results of the vector and scalar glueball masses obtained using the numerical computation are shown in table 1.

| $\alpha_s$ | $\gamma$ | $\phi_0(GeV)$ | $m_B(GeV)$ | $m_{\phi}(GeV)$ | $\kappa_{QCD}^{(d)}$ |
|------------|----------|---------------|------------|-----------------|----------------------|
| 0.12       | 8.30     | 0.143         | 2.11       | 4.20            | 2                    |
| 0.22       | 6.99     | 0.156         | 1.66       | 2.44            | 1.5                  |
| 0.47       | 5.99     | 0.170         | 1.25       | 1.25            | 1                    |
| 0.96       | 5.05     | 0.183         | 0.93       | 0.65            | .7                   |



▶ < ∃ >

## Equation of state for Quark Gluon Plasma using Dual QCD Bag

- The ground state hadron are spherically symmetric and quarks are confined to a sphere of finite size.
- A model of hadronic bag was identified describing the typical phase structure of QCD.
- The hadron energy in its confined phase is expressed as,

$$E_h = BV + \frac{C}{R_h}.$$
 (13)

free quarks inside a bag

 A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9 (1974) 3471.



QCD Equation of State at non- zero Magnetic Field using Dual QCD Formula

# Equation of state for Quark Gluon Plasma using Hadronic Bag

• The dominant part of the energy associated with the confinement regime is identified as temperature dependent bag energy expressed as,

$$B^{1/4} = \left(\frac{12}{\pi}\right)^{1/4} \frac{m_B}{8}.$$
 (14)

where  $m_B$  is the thermal vector glueball mass.

- Inside the bag, positive contribution to energy +B and negative contribution to pressure -B inside the bag.
- Outside, the bag, negative contribution to energy -B and positive contribution to pressure +B outside the bag.

< ロ > < 同 > < 三 > < 三 >

#### Basic thermodynamic relations.

 Using the grand canonical ensemble formalism partition function for a thermodynamical system in thermal and chemical equilibrium is expressed as,

$$Z(T, V, \mu) = Tre^{-(\hat{H} - \mu \hat{N})/T} = e^{-\Omega(T, V, \mu)/T}$$

 In presence of non-zero magnetic field the thermodynamical potential is related to the grand canonical partition functions as,

$$\Omega(T, V, \mu) = -T \ln Z(T, V, \mu) = F = \epsilon - Ts - eBM.$$

• The thermodynamical variables are related with the grand canonical partition function and expressed as,

$$P = \frac{\partial}{\partial V}(T \ln Z), \epsilon = \frac{T^2}{V} \frac{\partial}{\partial T} \ln Z + \mu n, s = \frac{1}{V} \frac{\partial}{\partial T}(T \ln Z).$$

The grand canonical partition function for the hadron and plasma phase.

$$(T \ln Z)_{\pi} = \frac{V}{30}\pi^2 T^4.$$
  
 $(T \ln Z)_{p} = V(\frac{2}{9}\pi^2 T^4 + \frac{2}{3}\mu^2 T^2 + \frac{1}{3\pi^2}\mu^4).$ 

The pressure, energy density and entropy density for hadron and plasma phase is given as,

$$P_{\pi} = 3 \times \frac{\pi^{2}}{90} T^{4}, \qquad P_{p} = \frac{2}{9} \pi^{2} T^{4} + \frac{2}{3} T^{2} \mu_{q}^{2} + \frac{\mu_{q}^{4}}{3\pi^{2}} - B.$$

$$\epsilon_{\pi} = 3 \times \frac{\pi^{2}}{30} T^{4}, \qquad \epsilon_{p} = \frac{2}{3} \pi^{2} T^{4} + 2 T^{2} \mu_{q}^{2} + \frac{\mu_{q}^{4}}{\pi^{2}} + B.$$

$$s_{\pi} = 2 \times \frac{\pi^{2}}{15} T^{4}, \qquad s_{p} = \frac{8}{9} \pi^{2} T^{3} + \frac{8}{3} T \mu_{q}^{2} + \frac{4}{3} \frac{\mu_{q}^{4}}{\pi^{2} T}.$$

Garima Punetha QCD Eq

QCD Equation of State at non- zero Magnetic Field using Dual QCD Formula

Dynamics of phase transition is studied by applying Gibbs Criteria given as,

$$P_h = P_p = P_c; \ T_h = T_p = T_c; \ \mu = 3\mu_q = \mu_c.$$

c represent the critical point of QGP-phase transition. The critical temperature of QGP-phase transition is given by,

$$T_c^{QGP} = rac{90}{17\pi^2}^{1/4} B^{1/4} pprox 0.856 B^{1/4}$$

3 b 4 3 b

## Study of strongly interacting Quark-Gluon Plasma

- The critical temperature of 0.187 GeV at  $\alpha_s = 0.12$  coupling.
- The critical temperature of 0.140 GeV at  $\alpha_s = 0.22$  coupling.
- The critical temperature of 0.116 GeV at α<sub>s</sub> = 0.47 coupling.
- The critical temperature of 0.090 GeV at α<sub>s</sub> = 0.96 coupling.



## Study of strongly interacting Quark-Gluon Plasma

- The critical temperature of 0.187 GeV at  $\alpha_s = 0.12$  coupling.
- The critical temperature of 0.140 GeV at  $\alpha_s = 0.22$  coupling.
- The critical temperature of 0.116 GeV at  $\alpha_s = 0.47$  coupling.
- The critical temperature of 0.090 GeV at α<sub>s</sub> = 0.96 coupling.



## Study of strongly interacting Quark-Gluon Plasma

- The critical temperature of 0.187 GeV at  $\alpha_s = 0.12$  coupling.
- The critical temperature of 0.140 GeV at  $\alpha_s = 0.22$  coupling.
- The critical temperature of 0.116 GeV at  $\alpha_s = 0.47$  coupling.
- The critical temperature of 0.090 GeV at  $\alpha_s = 0.96$  coupling.



## Study of strongly interacting Quark-Gluon Plasma

- The critical temperature of 0.187 GeV at  $\alpha_s = 0.12$  coupling.
- The critical temperature of 0.140 GeV at  $\alpha_s = 0.22$  coupling.
- The critical temperature of 0.116 GeV at  $\alpha_s = 0.47$  coupling.
- The critical temperature of 0.090 GeV at  $\alpha_s = 0.96$  coupling.



## Study of strongly interacting Quark-Gluon Plasma

- The critical temperature of 0.187 GeV at  $\alpha_s = 0.12$  coupling.
- The critical temperature of 0.140 GeV at  $\alpha_s = 0.22$  coupling.
- The critical temperature of 0.116 GeV at  $\alpha_s = 0.47$  coupling.
- The critical temperature of 0.090 GeV at  $\alpha_s = 0.96$  coupling.



## Study of strongly interacting Quark-Gluon Plasma

Variation of energy density for hadron and QGP phase.

- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $1.19 GeV/fm^3$  at  $\alpha_s = 0.12$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.37 \, GeV/fm^3$  at  $\alpha_s = 0.22$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.17 \, GeV/fm^3$  at  $\alpha_s = 0.47$ coupling.

 $\Delta \epsilon = \epsilon_p(T_c) - \epsilon_\pi(T_c)$ 



## Study of strongly interacting Quark-Gluon Plasma

Variation of energy density for hadron and QGP phase.

- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $1.19 GeV/fm^3$  at  $\alpha_s = 0.12$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.37 GeV/fm^3$  at  $\alpha_s = 0.22$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.17 \, GeV/fm^3$  at  $\alpha_s = 0.47$ coupling.





## Study of strongly interacting Quark-Gluon Plasma

Variation of energy density for hadron and QGP phase.

- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $1.19 GeV/fm^3$  at  $\alpha_s = 0.12$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.37 GeV/fm^3$  at  $\alpha_s = 0.22$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.17 GeV/fm^3$  at  $\alpha_s = 0.47$ coupling.

$$\Delta \epsilon = \epsilon_p(T_c) - \epsilon_\pi(T_c)$$



## Study of strongly interacting Quark-Gluon Plasma

Variation of energy density for hadron and QGP phase.

- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $1.19 GeV/fm^3$  at  $\alpha_s = 0.12$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.37 GeV/fm^3$  at  $\alpha_s = 0.22$ coupling.
- The normalized value of  $\Delta \epsilon$ at  $T_c$  is found to be  $0.17 GeV/fm^3$  at  $\alpha_s = 0.47$ coupling.

$$\Delta \epsilon = \epsilon_p(T_c) - \epsilon_\pi(T_c)$$



## Study of strongly interacting Quark-Gluon Plasma

#### Variation of specific heat for QGP.

 The variation of normalized specific heat for QGP in the infrared sector of QCD for α<sub>s</sub>= 0.12, 0.22, 0.47 and 0.96 respectively.



4 3 5 4 3 5 5

## Study of strongly interacting Quark-Gluon Plasma

#### Variation of specific heat for QGP.

 The variation of normalized specific heat for QGP in the infrared sector of QCD for α<sub>s</sub>= 0.12, 0.22, 0.47 and 0.96 respectively.



- **F F F F F** 

## Study of strongly interacting Quark-Gluon Plasma

#### Variation of specific heat for QGP.

 The variation of normalized specific heat for QGP in the infrared sector of QCD for α<sub>s</sub>= 0.12, 0.22, 0.47 and 0.96 respectively.



## Study of strongly interacting Quark-Gluon Plasma

#### Variation of specific heat for QGP.

 The variation of normalized specific heat for QGP in the infrared sector of QCD for α<sub>s</sub>= 0.12, 0.22, 0.47 and 0.96 respectively.



## Study of strongly interacting Quark-Gluon Plasma

#### Variation of speed of sound for QGP phase

- In QGP phase at the critical temperature the speed of sound drops to its minimum and with the increase in temperature its approaches to the value  $c_s^2 = 0.33$ .
- $\alpha_s = 0.12$
- α<sub>s</sub> = 0.22
- *α<sub>s</sub>* = 0.47

*α<sub>s</sub>* = 0.96



## Study of strongly interacting Quark-Gluon Plasma

#### Variation of speed of sound for QGP phase

- In QGP phase at the critical temperature the speed of sound drops to its minimum and with the increase in temperature its approaches to the value  $c_s^2 = 0.33$ .
- α<sub>s</sub> = 0.12
- $\alpha_s = 0.22$
- *α<sub>s</sub>* = 0.47
- *α<sub>s</sub>* = 0.96



4 E b

## Study of strongly interacting Quark-Gluon Plasma

#### Variation of speed of sound for QGP phase

- In QGP phase at the critical temperature the speed of sound drops to its minimum and with the increase in temperature its approaches to the value  $c_s^2 = 0.33$ .
- $\alpha_s = 0.12$
- α<sub>s</sub> = 0.22
- $\alpha_s = 0.47$

•  $\alpha_s = 0.96$ 



3 A &

## Study of strongly interacting Quark-Gluon Plasma

#### Variation of speed of sound for QGP phase

- In QGP phase at the critical temperature the speed of sound drops to its minimum and with the increase in temperature its approaches to the value  $c_s^2 = 0.33$ .
- $\alpha_s = 0.12$
- α<sub>s</sub> = 0.22
- *α<sub>s</sub>* = 0.47

•  $\alpha_s = 0.96$ 



A (1) > A (2) > A

## Study of strongly interacting Quark-Gluon Plasma

#### Variation of chemical potential with temperature

• The first-order phase transition line ends at a QCD critical end point (CEP) beyond which a transitional crossover region exists and for  $\alpha_s = 0.12$  and  $\alpha_s = 0.22$ the coordinates of such CEP are  $(T_E, \mu_E) = (0.184, 0.311)$  GeV and (0.138, 0.215)GeV respectively.



## Study of strongly interacting Quark-Gluon Plasma

Free energy change for quark-hadron phase transition

$$\Delta F(R) = -\Delta P \frac{4\pi R^3}{3} + \sigma 4\pi R^2,$$



## Study of strongly interacting Quark-Gluon Plasma

| $\overline{\alpha_s}$ | $T_c(GeV)$ | $R_c(fm)$ | $F_{Total}(GeV)$ | $\sigma^{1/3}(GeV)$ |
|-----------------------|------------|-----------|------------------|---------------------|
| 0.12                  | 0.172      | 0.7052    | 0.004565         | 0.04223             |
|                       | 0.177      | 0.7246    | 0.004637         | 0.04283             |
|                       | 0.182      | 0.7450    | 0.004709         | 0.04341             |
|                       | 0.187      | 0.7052    | 0.004781         | 0.04397             |
|                       | 0.192      | 0.6868    | 0.004493         | 0.04451             |
|                       | 0.197      | 0.6694    | 0.004422         | 0.04505             |
|                       | 0.202      | 0.6528    | 0.004353         | 0.04556             |
| 0.22                  | 0.125      | 1.0549    | 0.002426         | 0.02722             |
|                       | 0.130      | 1.0143    | 0.002442         | 0.02801             |
|                       | 0.135      | 0.9768    | 0.002457         | 0.02878             |
|                       | 0.140      | 0.9419    | 0.002472         | 0.02955             |
|                       | 0.145      | 0.9094    | 0.002487         | 0.03031             |
|                       | 0.150      | 0.8791    | 0.002503         | 0.03107             |
|                       | 0.155      | 0.8508    | 0.002518         | 0.03182             |

・ロット 4回マ 4回マ 4回マ 10000

Garima Punetha QCD Equation of State at non- zero Magnetic Field using Dual QCD Formula

## Study of strongly interacting Quark-Gluon Plasma

| $\overline{\alpha_s}$ | $T_c(GeV)$ | $R_c(fm)$ | $F_{Total}(GeV)$ | $\sigma^{1/3}(GeV)$ |
|-----------------------|------------|-----------|------------------|---------------------|
| 0.47                  | 0.101      | 1.3056    | 0.001643         | 0.02074             |
|                       | 0.106      | 1.2441    | 0.001684         | 0.02160             |
|                       | 0.111      | 1.1880    | 0.001724         | 0.02245             |
|                       | 0.116      | 1.1368    | 0.001764         | 0.02329             |
|                       | 0.121      | 1.0898    | 0.001803         | 0.02413             |
|                       | 0.126      | 1.0466    | 0.001843         | 0.02498             |
|                       | 0.131      | 1.0066    | 0.001882         | 0.02582             |
| 0.96                  | 0.075      | 1.7582    | 0.001076         | 0.01477             |
|                       | 0.080      | 1.6483    | 0.001128         | 0.01567             |
|                       | 0.085      | 1.5514    | 0.001181         | 0.01656             |
|                       | 0.090      | 1.4652    | 0.001233         | 0.01746             |
|                       | 0.095      | 1.3881    | 0.001286         | 0.01835             |
|                       | 0.100      | 1.3186    | 0.001338         | 0.01924             |
|                       | 0.105      | 1.2559    | 0.001390         | 0.02013             |

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

Garima Punetha QCD Equation of State at non- zero Magnetic Field using Dual QCD Formula

## Study of strongly interacting Quark-Gluon Plasma

Variation of trace anomaly and conformal measure for QGP

$$\Delta(T) = \frac{\epsilon_p - 3P_p}{T^4} = \frac{4B(T)}{T^4}$$

$$\mathcal{C} = \frac{\epsilon_p - 3P_p}{\epsilon_p} = \frac{4B(T)}{\epsilon_p}$$

•  $\alpha_s = 0.12$ 

• 
$$\alpha_s = 0.22$$

• 
$$\alpha_s = 0.47$$

• 
$$\alpha_s = 0.96$$



4 3 5 4 3 5 5

## Study of strongly interacting Quark-Gluon Plasma

$$\Delta(T) = \frac{\epsilon_p - 3P_p}{T^4} = \frac{4B(T)}{T^4}$$

$$C = \frac{\epsilon_p - 3P_p}{\epsilon_p} = \frac{4B(T)}{\epsilon_p}$$

• 
$$\alpha_s = 0.12$$

• 
$$\alpha_s = 0.22$$

• 
$$\alpha_s = 0.47$$

• 
$$\alpha_s = 0.96$$



## Study of strongly interacting Quark-Gluon Plasma

$$\Delta(T) = \frac{\epsilon_p - 3P_p}{T^4} = \frac{4B(T)}{T^4}$$

$$C = \frac{\epsilon_p - 3P_p}{\epsilon_p} = \frac{4B(T)}{\epsilon_p}$$

- $\alpha_s = 0.12$
- $\alpha_s = 0.22$

• 
$$\alpha_s = 0.47$$

• 
$$\alpha_s = 0.96$$



## Study of strongly interacting Quark-Gluon Plasma

$$\Delta(T) = \frac{\epsilon_p - 3P_p}{T^4} = \frac{4B(T)}{T^4}$$

$$C = \frac{\epsilon_p - 3P_p}{\epsilon_p} = \frac{4B(T)}{\epsilon_p}$$

• 
$$\alpha_s = 0.12$$

• 
$$\alpha_s = 0.22$$

• 
$$\alpha_s = 0.47$$

• 
$$\alpha_s = 0.96$$



## Study of strongly interacting Quark-Gluon Plasma

$$\Delta(T) = \frac{\epsilon_p - 3P_p}{T^4} = \frac{4B(T)}{T^4}$$

$$C = \frac{\epsilon_p - 3P_p}{\epsilon_p} = \frac{4B(T)}{\epsilon_p}$$

• 
$$\alpha_s = 0.12$$

• 
$$\alpha_s = 0.22$$

• 
$$\alpha_s = 0.47$$

• 
$$\alpha_s = 0.96$$



Objectives Introduction Dual QCD with Magnetic Symmetry Equation of state for Quark Gluon Plasma using Dual QCD Hadronic Bag Study of strongly interacting Quark-Gluon Plasma Study of strongly interacting Acknowledgements Acknowledgements

## Conclusion

#### Conclusion

- Based on the topological structure of non-abelian gauge theories, a dual QCD gauge formulation has been developed in terms of magnetic symmetry, which manifest the topological structure of the symmetry group in a non-trivial way.
- The dynamical breaking of the magnetic symmetry has been shown to impart the dual superconducting properties to the magnetically condensed QCD vacuum which ultimately leads to a unique flux tube configuration in QCD vacuum responsible for enforcing the color confinement.
- Utilizing the dual QCD model in terms of the magnetic symmetry structure of non-Abelian gauge theories, the dual QCD hadronic bag has been constructed which mainly satisfy the main qualitative feature observed for a strongly interacting QGP.

- 4 周 ト 4 戸 ト 4 戸 ト

#### Acknowledgements

Ms. Garima Punetha is thankful to the organizers of AYSS 2021 for opportunity to present the work.

### THANK YOU

