

Reconstruction of simulated and experimental data in the Drift Chambers of the BM@N experiment

V. Lenivenko, V. Palichik, M. Patsyuk, <u>N. Voytishin</u> JINR

AYSS-2021 2021-10-15

SRC RUN7 CONFIGURATION (2018):

enivenko 8th BM@N Collaborating

Upstream (MWPC-Si) Track Algorithm

- Si Tracks building in SiDets
- MWPC Tracks (Pair1) building in Ch2 & Ch3
- Si Tracks MWPC Tracks (Pair1) matching
- Matching of the rest Si Tracks with MWPC Segments separately (Ch2 or Ch3)
- 5. Track fitting by 2 systems => Upstream track

MWPC Working Area is Increased (downstream the target)

MWPC has 6 planes: U,V are rotated by \pm 60 degrees to the X-axis

Area3

- is the area of intersection of 3 coordinates: XVU (6-planes segment possible)
- Area 3 ≈ beam area (it's basically 1 track) Area3 was used in old algorithm of MWPC track reconstruction

Area2 is the area where 2 coordinates intersect: $U_1 U_2 V_1 V_2$ or $X_1 X_2 V_1 V_2$ or $X_1 X_2 U_1 U_2$ (4- planes segment possible)

The adding of Area2(S2) doubles the working area!

One-coordinate S1-area is not used

Improvement in New Algo: False Combinatorics were Rejected

Ch2 segments coordinate plots. The same for Ch3 and Pair1

Data vs MC: Coordinate Plots for Ch2 Segments

New algo

Data Run 3338 (H2 target)

MC true (QGSM)

Good agreement between experimental and MC data is obtained

MC reco vs MC true: Upstream Reco Algo Improvement

DCM-SMM

Drift Chambers Reconstruction Chain

Some selected residuals [Measurement – segmentFit]

C beam, empty target, B = 1200A

MC and data residuals are in agreement for all coordinates

Angle values and resolution

C beam, empty target, B = 1200A

Difference in slopes between DC1 & DC2

C beam, empty target, B = 1200A

MC slope difference distributions are adequate to SRC data

Difference in coordinates for matching DC1 with DC2

Smearing for MC coordinates is adequate to SRC data

C Beam momentum resolution estimation

C Beam, empty target, B = 1200A

Reconstruction Efficiency vs. MC hit probability

ION generator (single particle in event)

	dc1, %	dc2, %	dcGlobal, %
100% hit on layer probability	100	100	100
92% hit on layer probability	86.32	86.37	69.18

$^{12}C + p \rightarrow 2p + ^{10}B / ^{10}Be + (n / p)$

Dubna Cascade Model (DCM-QGSM)

Layer hit reconstruction probability	Particle type	dc1, %	dc2, %	dcGlobal, %
100% hit on layer probability	lons(¹² C, ¹⁰ B, ¹⁰ Be)	95.6	96.6	91.5
	p , e, π⁺, π⁻	96.1	98.3	91.3
92% hit on layer probability	lons(12 C, 10B, 10Be)	81.7	82.9	67.7
	p , e, π⁺, π⁻	81.9	84.7	65.3

Feature. The probability that there is a detector response on layer corresponding to a particular MC point can be adjusted.

Conclusions

- An algorithm for Upstream tracks reco based on MWPC and SiDet has been improved
- Number of MC true & MC reco tracks coincide in 92% of events (old reco 37%)
- Realistic response of DCH added in simulation procedure
- Residuals and segment parameters are in agreement between MC and data
- The differences for matching between two DCH chambers in slopes and coordinates are quite similar for MC and data
- Tracking unified for SRC/BM@N/MC/EXP
- The full reconstruction chain for Dift Chambers is available in *bmnroot* package.
- Detailed investigation of reconstruction efficiency and resolution adjustments is ongoing.

1 2 11

backup

Ar beam e.m. contaminated MC data vs. Ar data

Ar beam, empty target, B = 1250A

DCH1 reconstructed segments local coordinates

Remark. Cut on beam region applied in order for reconstruction to work properly

Difference in slopes for DC1 & DC2

MC slope difference distributions are adequate to Ar data

Difference in coordinates for matching DC1 with DC2

Smearing for MC coordinates is adequate to Ar data

19

Drift Chambers coordinate reconstruction on a layer

Drift Chambers Reconstruction & Performance

$$X = \frac{V - U}{\sqrt{2}};$$
$$X = \frac{V + U}{\sqrt{2}};$$

- 4 double coordinate planes;
- wire angles 0°,90°,±45°;
- wire pitch 10 mm;
- Yout ± 1.35 m, Xout ± 1.35 m
- $R_hole = 10 \text{ cm};$
- 2048 wires per chamber.

MCHit -> smeared SimHit

2 RecHits are obtained from the smeared SimHit