Centrality determination in MPD at NICA AYSS-2021

Pedro Antonio Nieto Marín Universidad Autónoma de Sinaloa, México Dr. Alexey Aparin Joint Institute for Nuclear Research, Dubna

JOINT INSTITUTE FOR NUCLEAR RESEARCH

QCD phase diagram (NICA)

Centrality determination in MPD at NICA

10th October 2021

1 / 28

IOINT INSTITUTE

Nuclotron-based Ion Collider fAcility (NICA)

First events with Bi+Bi at $\sqrt{S_{NN}} = 9.2$ GeV.

- Study of in-medium properties of hadrons and nuclear matter and the equation of state.
- Search for location of the phase transition between hadronic matter and QGP; search for new phases of baryonic matter and the Critical Point.

Multi-Purpose Detector (MPD)

 Detect the high multiplicity events and perform particle identification.

> 3-D tracking system (TPC). Particle identification (PID) system based on the time-of-flight measurements and calorimetry.

- Event rate in the MPD interaction region \sim 6 kHz.
- Total charged particle multiplicity would be 1000+ in the most central Au+Au collisions at $\sqrt{S_{NN}} = 11$ GeV.
- $\langle p_T \rangle \leq$ 500 MeV/c

Time Projection Chamber

- Provide charged particles momentum measurement with sufficient resolution, particle identification and vertex determination.
 - Provide efficient tracking up to pseudorapidity region $|\eta| \le 1.5$ and $p_T \ge 100$ MeV/c.

Centrality determination in MPD at NICA 10th October 2021 4 / 28

Centrality determination

Figure: Relation between impact parameter (b), number of participants (N_{part}) , multiplicity (N_{ch}) and centrality.

Definition

Centrality: Percentage of the total nuclear interaction cross section σ_{AA}

$$c_{b} = \frac{\int_{0}^{b} \frac{d\sigma}{db'} db'}{\int_{0}^{\infty} \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{AA}} \int_{0}^{b} \frac{d\sigma}{db'} db'$$
(1)

Definition

Centrality classes based on the multiplicity distribution:

$$c_m[\%] = \frac{\int_{N_{max}}^{N_i} \frac{dN_{ev}}{dN_{ch}} dN_{ch}}{\int_{N_{max}}^{0} \frac{dN_{ev}}{dN_{ch}} dN_{ch}}$$

(2)

Centrality determination in MPD at NICA

MC-Glauber

- Compose two nuclei out of nucleons and simulate their collision process event by-event.
- Geometrical quantities: Impact parameter b, N_{part}, N_{spec} and N_{coll}.

Loizides, C.; Nagle, J.; Steinberg, P. Improved version of the PHOBOS Glauber Monte Carlos SoftwareX 2015, 1–2, 13.

Nuclear density function for five different nucleus (Au, Pb, Cu, Bi and Xe).

Definition

Nuclear density function:

$$\rho(r) = \rho_0 \frac{1 + w(r/R)^2}{1 + exp(\frac{r-R}{a})} \quad (3)$$

Centrality Determination / MC-Glauber Approach

Multiplicity selection

- $\blacksquare p_T > 0.15 \text{ GeV/c}$
- \blacksquare $|\eta| < 0.5$ and $|\eta| < 1.3$
- Only charged particles
- *N_{hits}* > 16
- Primary particles.
- $\blacksquare \sim 600,000$ reconstructed events in MpdRoot Framework.
- Bi+Bi collisions at 7.7, 9 and 9.46 GeV using UrQMD.

Multiplicity distribution

Figure: Comparison of the multiplicity distributions at the two η ranges ($|\eta| < 0.5$ and $|\eta| < 1.3$) at $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV.

b vs centrality

Figure: Comparison of the relation of impact parameter *b* with centrality of the three energies $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV for $|\eta| < 0.5$ (left) and $|\eta| < 1.3$ (right).

 $|\eta| <$ 0.5 and $|\eta| <$ 1.3 comparison

Pseudorapidity comparison of the relation of impact parameter with centrality at the three energies $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV

Centrality ranges comparison

Reduce the range of the centrality classes to 1% to compare it with the previous results obtained of 5%.

■ *p*_T > 0.15 GeV/c

Centrality ranges comparison

5% and 1% centrality ranges comparison of the impact parameter vs centrality at the three energies $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV.

UrQMD model

Figure: Multiplicity distributions based on the UrQMD generator for Bi+Bi collisions at the three energies $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV in the pseudorapidity ranges of *eta* < 0.5 (left) and *eta* < 1.3 (right).

- Only charged particles
- ~ 600,000 events.
- Bi+Bi collisions at 7.7, 9 and 9.46 GeV using UrQMD output files (test.f14).

10th October 2021

UrQMD model ($|\eta| < 0.5$ and $|\eta| < 1.3$)

UrQMD model and TPC results comparison of the impact parameter vs centrality at the three energies $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV with $|\eta| < 0.5$ (left) and $|\eta| < 1.3$ (right).

Parameterization comparision

- "Default" $N_a(f) = fN_{part} + (1 - f)N_{coll}$ $f = 0.65 \pm 0.104$
- "Npart" $N_a(f) = (N_{part})^f$ $f = 1 \pm 0.008$
- "Ncoll" $N_{coll}(f) = (N_{coll})^{f}$ $f = 0.91 \pm 0.002$
- "STAR" $N_a(f) = \frac{(1-f)}{2}N_{part} + fN_{coll}$ $f = 0.1 \pm 0.032$

Better agreement with STAR and Default (0-40%).

Different generators comparision

Figure: Comparison of the different generators of the relation of the impact parameter and the centrality for Au+Au collisions at 7.7 GeV.

Better agreement with PHSD, primary particles, $|\eta| < 1.3$.

IOINT INSTITUTE

Future work

Compare and explore Γ – *Fit* method. Rogly, R., Giacalone, G., Ollitrault, J.Y. (2018). Reconstructing the impact parameter of proton-nucleus and nucleus-nucleus collisions. Phys. Rev. C, 98, 024902.

- Finish analysis of new obtained reconstructed data from Bi+Bi collisions at 9.2 GeV.
- Compare results with other Monte Carlo generators (LAQGSM, PHSD and PHQMD) for Bi+Bi collisions at the four different energies (7.7, 9, 9.2 and 9.5 GeV).

Thank you!

Backup slides

Figure: Relation between the parameters f and k with their corresponding χ^2 with Bi+Bi collisions at 9 GeV (left). Comparison between the input multiplicity distribution and the MC Glauber fit corresponding to the parameters f = 0.65, k = 5 and $\mu = 0.16$ (right).

Parfenov, P., Idrisov, D., Luong, V., Taranenko, A. (2021). Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies. Particle 4(2), 275–287. DOI: https://doi.org/10.3390/particles4020024

Relation to impact parameter, N_{coll} and N_{part}

Centrality determination in MPD at NICA 10th October 2021 23 / 28

N_{coll} vs centrality

Figure: Comparison of the N_{coll} with centrality of the three energies $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV for $|\eta| < 0.5$ (left) and $|\eta| < 1.3$ (right).

N_{part} vs centrality

Figure: Comparison of the N_{part} with centrality of the three energies $\sqrt{S_{NN}} = 7.7$, 9 and 9.46 GeV for $|\eta| < 0.5$ (left) and $|\eta| < 1.3$ (right).

Centrality ranges comparison

UrQMD model ($|\eta| < 0.5$)

UrQMD model and TPC results comparison of the impact parameter vs centrality at the three energies $\sqrt{S_{NN}} =$ 7.7, 9 and 9.46 GeV ($|\eta| <$ 0.5).

UrQMD model ($|\eta| < 1.3$)

UrQMD model and TPC results comparison of the impact parameter vs centrality at the three energies $\sqrt{S_{NN}} =$ 7.7, 9 and 9.46 GeV ($|\eta| <$ 1.3).

