Детекторы Medipix на основе новых материалов для фундаментальных и прикладных исследований отчет о выполнении проекта и предложение по продлению

A. Zhemchugov

Physics of a semiconductor detector

Gallium arsenide as a detector material

- GaAs is a well-known semiconductor, second widespread after silicon
- Limited use in particle detection because of low resistivity, low CCE and high intrinsic noise
- New modification of GaAs, compensated by Cr (GaAs:Cr), has been invented in Tomsk State University in 2000-2005
 - suitable for detector construction
 - radiation hard
 - Z(GaAs)~ 32 vs Z(Si)=14 \rightarrow higher photon detection efficiency

Material	main charge carriers	electron drift length	bulk resistivity	active sensor thickness	intrinsic noise
LEC SI-GaAs	holes	0.3-0.5 mm	<2*10 ⁸ Ω*cm	<300 μm	high
GaAs:Cr	electrons	0.7 - 2 mm	~10 ⁹ Ω*cm	up to 1 mm	low

The idea of Tomsk GaAs:Cr

- LEC SI-GaAs commercially available
 - difficult to control the impurities at low level
 - EL2 centers capture the electrons (τ ~0.2 ns)
- n-type SI-GaAs = LEC Si-GaAs doped with Nd~10¹⁷ donors (Sn or Te)
 - also commercially available
 - EL2 centers are compensated
 - n-type, low resistivity
- Compensated GaAs = n-type SI-GaAs compensated with Cr (or Fe)
 - high resistivity (=low free carrier concentration)
 - type depends on Cr concentration: p-type (π -type) if N_{Cr}>N_d and n-type (v-type) if N_{Cr}<N_d
 - N_{cr} and N_{d} are 'macroscopic': it is possible to control the material properties in wide range

Two types of GaAs:Cr detectors

- 'Resistive' GaAs:Cr
 - resistivity ~10⁹ Om*cm
 - active thickness up to 1 mm
 - electron drift length up to 2 mm

- πv junction structure
 - active thickness is determined by πv junction (~0.1-0.2 mm depending on Ubias)
 - resistivity and CCE is Ok

π-type GaAs:Cr

v-type GaAs:Cr

n-type GaAs

Radiation hardness studies

Linac-200 at JINR

Part of refurbished 800 MeV linac MEA from NIKHEF

Faraday cup Sensors Collimator Beam pipe

- 22 MeV electrons
- Current in bunch 15 μ A
- Bunch width 2 μ s
- Bunch frequency 10-250 Hz
- Focal spot ~ 1 mm, can be defocused up to 20 mm
- Estimated doserate for GaAs ~ 600 kGy/hour

We thank Dr. V. Kobets and his team

CCE vs Dose

I-V measurements

GaAs:Cr based Medipix detectors

Hybrid pixel detectors

Flip-chip bonding

Medipix readout chip

- Family of single photon counting readout chips. Two discriminator thresholds in each pixel. Recent version support charge summing mode
- 256x256 pixels 55x55 µm² each (14.1x14.1 mm)
- Developed by the Medipix collaboration based at CERN

Circuit inside a single Medipix pixel

- Fully exploit the available 130 nm CMOS technology
- ~1600 transistors per pixel

1. Preamplifier

2. Shaper

3. Two discriminators with 5-bit

threshold adjustment

4. Pixel memory (13-bits)

5. Arbitration logic for charge

allocation

- 6. Control logic
- 7. Configurable counter

A set of the set of

Single photon counting

Integration

Analog signal

Noise is integrated and inherent in signal

Single photon counting

Energy discrimination

Medipix and Timepix

Charge summing in Medipix3

Charge summing in Medipix3

Charge summing in Medipix3 (simulation)

Charge summing in Medipix3 (experiment)

HAMANN *et al.*: PERFORMANCE OF A MEDIPIX3RX SPECTROSCOPIC PIXEL DETECTOR WITH A HIGH RESISTIVITY GALLIUM ARSENIDE SENSOR 5

Fig. 5. Energy response functions in SPM (a) and CSM (b) for monochromatic synchrotron radiation of 8 keV, 15 keV, 25 keV and 40 keV. Shown are spline interpolations. The levels of the electronic noise are indicated by the dashed black lines.

Medipix chip evolution

	Medipix2	Timepix	Medipix3	Timepix3	Medipix4	Timepix4
Pixel side (µm)	55	55	55/110	55	x/2x/3x	У
Technology (nm)	250	250	130	130	65	65
# pixels in x and y	256	256	256/128	256	512/256/128	512
Readout	Frame based	Frame based	Frame based	Data driven/	Frame based	Data driven/
architecture	Sequential RW	Sequential RW	Continuous RW	frame based	Continuous RW	frame based
Charge summing						
and allocation	No	No	Yes	No	Yes	No
mode (CSM)						
# thresholds	2 (window	1	2/4/8 Seq RW	1	2	1
# thesholds	discriminator)	L	1/4 Cont RW	1	•	1
		ToT (14 bit) OR		ToT (10 bit) AND		
ΤοΤ/ΤοΑ	No	ToA (14 bit <i>,</i> 10ns	No	ToA (14 bit <i>,</i> 1.56ns	No	ToT AND ToA
		precision)		precision)		
Front end noise	110	100	80(SPM)	62	≤ 80 (SPM)	< 62
(e⁻ rms)	110	100	174(CSM)	02	≤ 174 (CSM)	<u> </u>
Peaking time (ns)	150	100	120	30	≪120	≪ 30
			826 (SPM 55μm)			
Max count rate	020		164 (CSM 55μm)	0.42 (data duiven)	uE Maaliniu2	
(Mc/mm²/s)*	826	-	376 (SPM 110μm)	0.43 (data driven)	x5 iviedipix3	X10 Timepix3
			28 (CSM 110µm)			
Number of sides	3	3	3	3	4	4
available for tiling	-	-	-	-		·

JINR is a member of Medipix collaboration since 2015

Characterisation of GaAs:Cr based Timepix detectors

First Medipix+GaAs:Cr detector

Developed in 2008 by the collaboration of JINR, Tomsk and CERN

Energy resolution (GaAs+Timepix)

Energy resolution (GaAs+Timepix TOT)

Суммарные спектры до и после обобщенной и попиксельной калибровки. ²⁴¹Am, ¹⁰⁹Cd, ¹³⁷Cs

2013

13 / 16

GaAs+Timepix (TOT mode), 2013

Энергия, кэВ	Разрешение	Разрешение	Разрешение	
кэВ	без калибровки,%	после обобщ. калибр.,%	после попикс. калибр.,%	
16.6 (Zr)	18.6	18.7	17.4	
18.4 (Mo)	15.1	21.9	15.7	
21.3 (Rh)	14.7	18.9	15	
$22.0 (^{109}Cd)$	13.4	18	12.3	
24.5 (Cd)	14.4	19.3	11.9	
25.6 (In)	13.6	19.4	12.5	
26.7 (Sn)	13.5	18	10.9	
$32.0 \ (^{137}Cs)$	17.6	18.3	12	
$59.5 (^{241}\text{Am})$	11	13.8	5.5	

Long term stability measurements

- Timepix + GaAs:Cr sensor (1000 μ m) thermostabilized at $T_{stab} = 20 \pm 0.2^0 C$ operates in TOT mode
- RelaxD read-out (by ASI) + SoPhy v.1.1.3
- irradiation by ^{241}Am source and looking for changing position of E_{γ} =59.5 keV peak in time
- 10 month of almost continuous measurements

Long term stability measurements

^{241}Am peak position during time $^{-1}$

- Mean value of peak changed less than promile per year
- From 28 \rightarrow 61 'dead' pixels after 10 month of operation

Beam tests at synchrotron radiation facility in Novosibirsk

- Measurements were done at electron-positron storage rings VEPP-3M and VEPP-4M, serving as sources of synchrotron radiation
- VEPP-3M:
 - Electron beam energy: 2 GeV
 - Beam current up to 100 mA
 - Bunch length: 1 ns
 - ▶ Period: 125 ns
 - Flux up to: $6 * 10^{10} \ ph/mm^2/s$
- SR station "X-ray microscopy and microtomography":
 - Energy range of monochromatic radiation: 6 44 keV
 - Monochromated SR beam size: 2 mm x 40 mm
 - \blacktriangleright Collimator down to 10 x 10 μm

Timepix with 1 mm GaAs:Cr in MPX mode

Beam tests at synchrotron radiation facility in Novosibirsk

- Several pixels of the detector have been scanned with step of 10 μm using a monochromatic collimated photon beam of 10 × 10 μm^2 (12 40 keV)
- Pixel response was obtained for various beam positions - geometrical mapping of pixel sensitivity
- Energy resolution of a single pixel was measured: **4.5** % @ 18 keV

Separator of monoenergetic electrons

Source ${}^{90}Sr$, $E_e \in$ [80,2000] keV

μτ vs depth

For Timepix with GaAs:Cr sensor of 900 μ m thickness:

- it is shown that collected charge is maximal for various electron energies
- fit by Hecht equation -> $\mu_e \tau_e$ values are obtained

E_e [keV]	Range [μ m]	$\mu_e \tau_e \ [cm^2/V]$
100	24	(1.2 ± 0.05) x 10^{-4}
300	143	$(1.4 \pm 0.05) \times 10^{-4}$
780	450	(1.9 ± 0.02) x 10^{-4}
1700	881	(2.7 ± 0.06) x 10^{-4}

• Peak from 100 keV electrons is observable \rightarrow dead layer (if exists) is less 20 μ m

Electron charge transport in GaAs:Cr based Timepix detectors

- DUT: Timepix L05-W0203 with sensor AG-892№59-1 (500 um)
- X-ray characteristic spectra of a Zr foil were collected at varying bias voltages
- Photons corresponding to Zr K_{α} = 15.7 keV have a mean free range in GaAs less 25 μ m -> the majority of interactions will occur close to cathode
- Mean value of 15.7 keV photo peak was calculated for each pixel at different bias voltages only single pixel events are evaluated
- Obtained dependencies "Peak position vs bias voltage" for each pixel were fitted using modified Hecht equation for case of small pixels [arxiv:1701.03459]

Electron charge transport in GaAs:Cr based Timepix detectors

Irradiation by heavy ions

Several irradiation test-beams of GaAs:Cr and Si detectors with different ions were carried out using the JINR cyclotron U-400M:

- ^{22}Ne
- ${}^{40}Ar$
- ^{84}Kr
- ^{132}Xe

Kinetic energy from 30 MeV to 2.9 GeV.

Irradiation by heavy ions

 More detailed information: S.M. Abu Al Azm et.al. Response of Timepix Detector with GaAs:Cr and Si Sensor to Heavy Ions. Physics of Particles and Nuclei Letters, 2016, Vol. 13, No. 3, pp. 363–369.

Irradiation by neutrons

Nominal pulse = $7x10^{12}$ protons

Particle identification?

Discriminator 1

D₁=16 S/L² 0<D₁≤1

S=4 - square of the cluster L=10 - perimeter D₁=0.64

 D_1 characterises the shape of the cluster. In pixel geometry D_1 is maximal for square: $D_1=1$

Discriminator 2

 $D_2 = S_T / S$ $0 \le D_2 \le 1$

S=4 - square of the cluster T=20 - threshold $s_T=3$ - square of the cluster above the threshold T $D_2=0.75$

D₂ characterises energy distribution over the pixels

Particle identification

ATLAS GaAsPix

15 GasAs:Cr based Timepix detectors were installed in the ATLAS pit in 2016-2017 to monitor the radiation background

Infrastructure

X-ray facility 'Kalan'

X-ray source SourceRay SB120: Focal spot ~70 um X-ray energy up to 120 keV

Probe station Cascade Microtech EPS150TESLA

I-V measurements (V up to 1 kV, I range 0.1 nA — 100 mA, precision <=5%) C-V measurements Probe size 5 um x 5 um

CCE meter

Capable to measure CCE down to 1%

CCE measurement ~ 15 min

I-V measurement ~ 10 min

Mounting the sample to a PCB is not necessary

Ultrasound wire bonder

TPT HB16

Programmable Gold, aluminium, silver & copper wire Wire sizes from 17µm to 75µm Wedge, ball & ribbon bonding

microCT

MARS-CT

- Fully-functional microCT scanner equipped with GaAs:Cr Medipix detectors
- X-ray energy up to 120 keV
- Current up to 350 uA
- Sample size up to Ø 10 cm X 30 cm
- The sample is immovable
- Geometrical magnification up to 1.8 times (big samples) or up to 4 times (small samples)

Manufactured by MARS Bioimaging Ltd., New Zealand

Spatial resolution

В

Block	linewidth (µm)	linepairs per pattern	points (µm)	points per pattern
А	5, 10, 25, 50, 100, 150	5		
В	5, 10, 15, 20, 25, 30	5	5, 10, 15, 20, 25, 30	18
С	5, 10, 15, 20, 25, 30	5	5, 10, 15, 20, 25, 30	18
D			5, 10, 25, 50, 100, 150	18
E	5, 10, 25, 50, 100, 150	5		

Spatial resolution

Atherosclerotic plaque

Sample of an abdominal aorta

More samples

carotid plaque in a syringe

Mouse

Mouse

Mouse

Chromites in manganese ore

.

Spectral CT

The idea

Tests with a standard phantom

Attenuation vs. X-ray Energy (measured)

Colour X-ray CT

Plans for 2018-2020

- Systematic study of response of GaAs:Cr based Medipix detectors to
 - heavy ions
 - neutrons
- Particle identification
- Model of radiation damage in GaAs: Cr \rightarrow way to increase the radiation hardness?
- Spectral CT and further applications of GaAs:Cr based microCT in medicine and other fields
- Development of the relevant research infrastructure at LNP
- Preparation to develop our own Medipix4-based detectors