NICA Project: Implementation status and prospects for applied research

<u>V. Kekelidze,</u> Joint Institute for Nuclear Research, Dubna

> Volga river

NICA

International Round Table on Applied Research & Innovations @ NICA 15-16 September, Dubna,

Main goals:

- study of hot and dense baryonic matter
 - at the energy range of max baryonic density;
- investigation of nucleon spin structure, polarization phenomena;
- provide infrastructure for applied research.

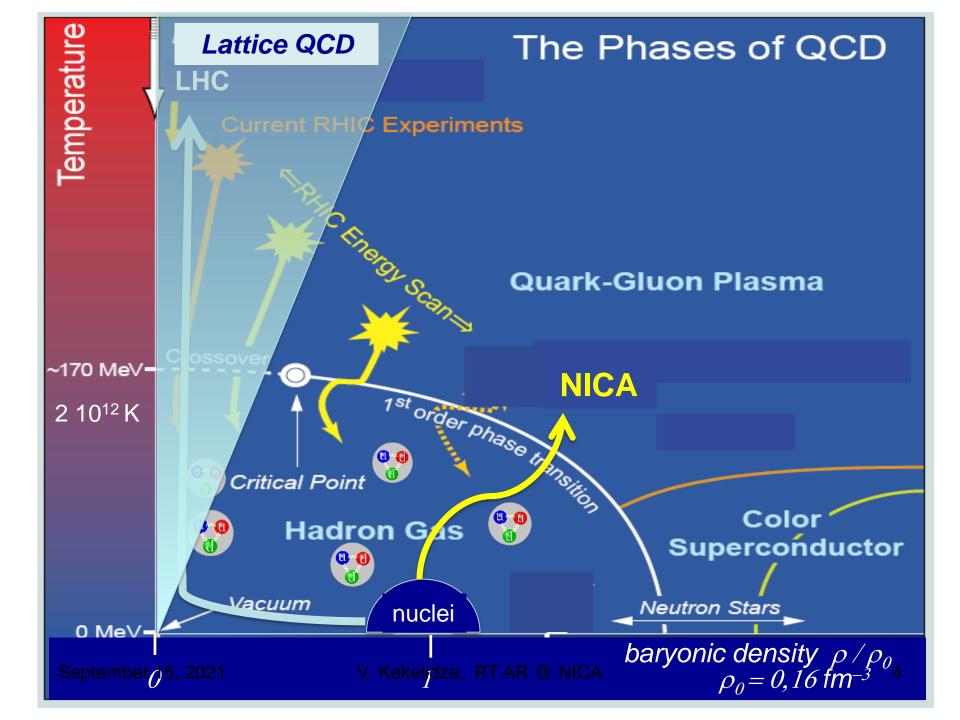
- modernization of existing accelerator facility
- construction of Collider to collide
 - relativistic ions from **p** to **Au** at energy range $\sqrt{S_{NN}}$ = 4 11 GeV
 - polarized **p** and **d** at energy up to $\sqrt{S} = 27 \text{ GeV}(p)$

Strong interactions play a central role in particle physics and are well described by **QCD**, but **questions** remain :

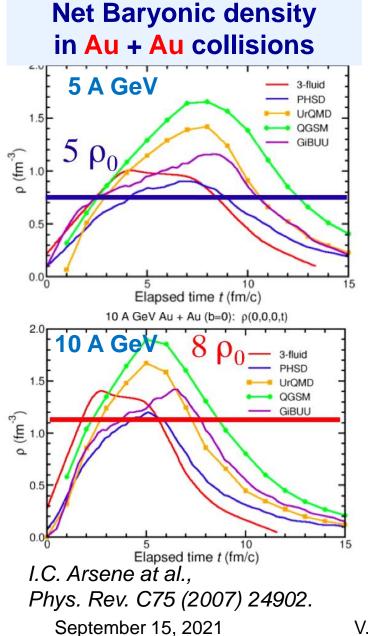
- long-distance phenomena, for example, confinement;
- collective behaviour in extreme conditions,

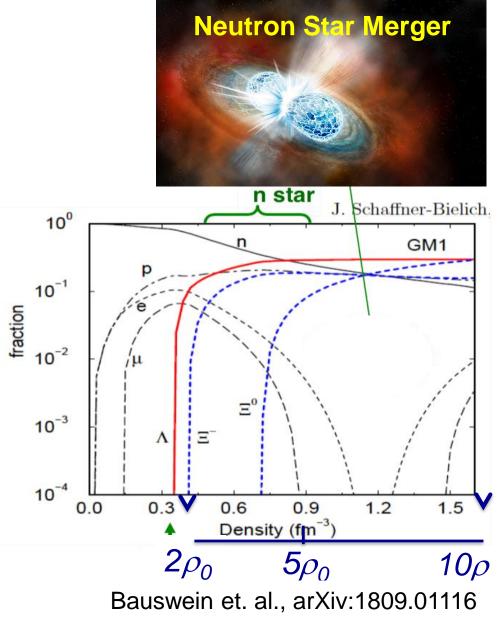
```
at high temperature, or high density;
```

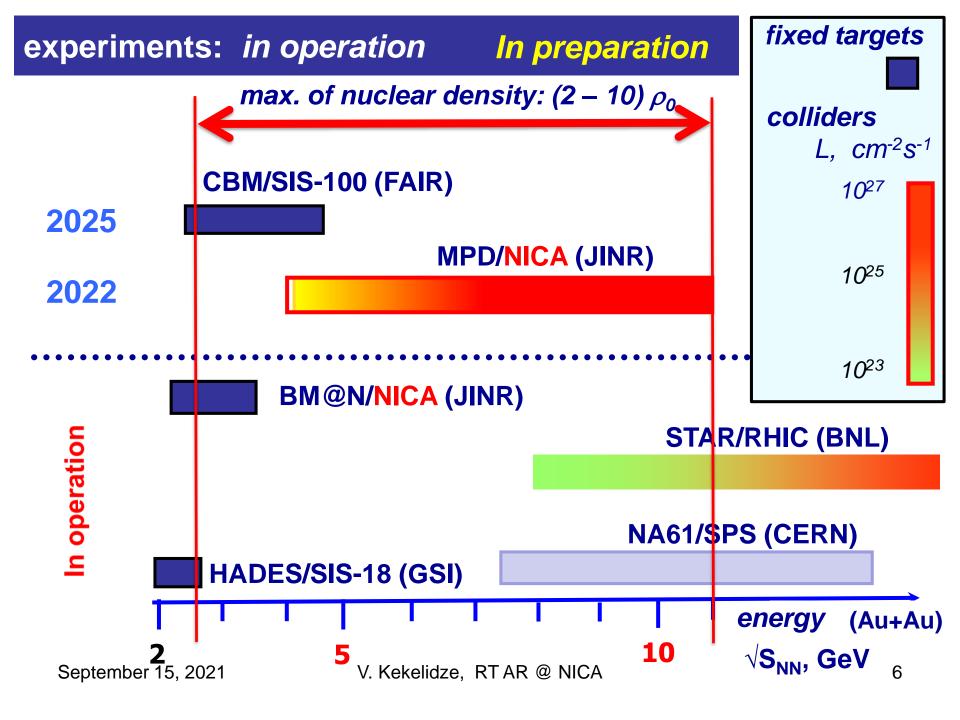
- reliable predictions in nonperturbative mode.
- is it possible to describe phenomena on the border of low and high energies from the first principles of QCD?
- how fast moving quarks and gluons are grouped

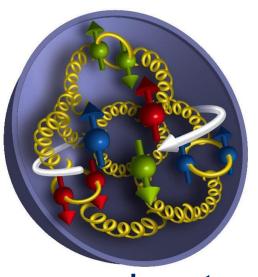

in colour-singlet hadrons?

QCD lattice calculations predict the transition of matter

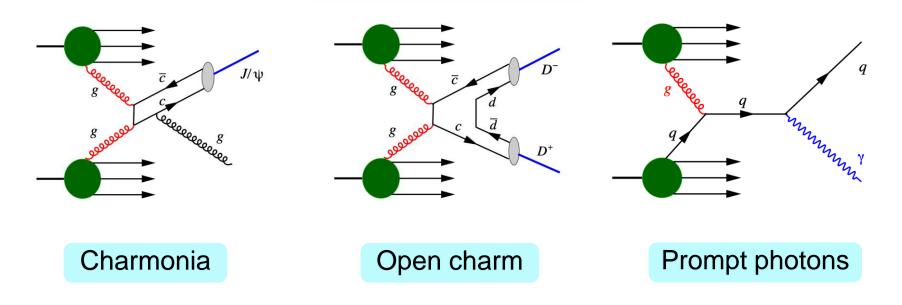

in quark-gluon plasma (QGP),


in which partons are not confinement and chiral symmetry is restored.


September 15, 2021



Similarity of Stellar Objects & Heavy Ion Collisions



Physic @ SPD

SPD - a universal facility for comprehensive study of polarized gluon content (TMD PDFs) in proton and deuteron at large x in proton and deuteron

with complementary probes:

Main objects of the NICA Complex Accelerators: 2 injectors, Booster, Nuclotron, Collider 3 experiments: BM@N, MPD, SPD; Applied Research Area

Nuclotron:

superconducting synchrotron, put in operation in 1993

Parameters	Nuclotron	
type	SC synchrotron	
particles	↑p,↑d, nuclei	
injection energy, MeV/u	5 (∱p,∱ d) 570-685 (<mark>Au</mark>)	
max. kin. energy, GeV/u	12.07 (∱p); 5.62 (∱d) 4.38 (Au)	
magnetic rigidity, T m	25 – 43.25	
circumference, m	251.52	
cycle for collider mode, s	1.5-4.2 (active); 5.0 (total)	
vacuum, Torr	10 -9	
intensity, Au ions/pulse	1 10 ⁹	
transition energy, GeV/u	7.0	
RF range, MHz	0.6 -6.9 (∱p,∱d) 0.947 – 1.147 (nuclei)	
spill of slow extraction, s	up to 10	

modernized in 2010-2015

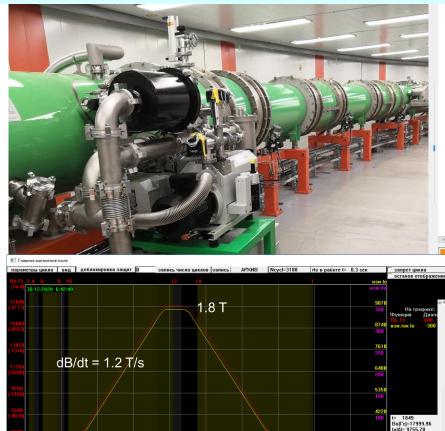
September 15, 2021

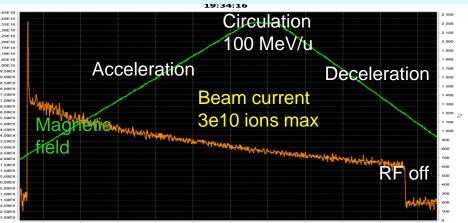
Linacs

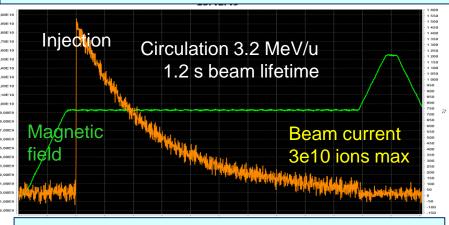
Linac	LU-20	HILAC	
structure (section number)	RFQ + Alvarez type	RFQ + IH DTL(2)	
mass to charge ratio A/Z	1-3	1-6	
injection energy, keV/amu	150 for A/Z 1-3	17	
extraction energy, MeV/amu	5 (A/Z 1-3)	3.24 (A/Z=6)	
input current, mA	up to 20	up to 10	

LU-20 – JINR, INR, ITEP, MEPI

put in operation: May '16


put in operation: Oct. .'16


September 15, 2021


An important milestone has been reached

– the first Booster technical run (completed on 30/12/20) injected He¹⁺, 3,2MeV/u, 6,5*10¹⁰ ppp

FCT signal when injecting into rising field, capturing (~60%), accelerating & decelerating: no transient losses on the MF table & after.

Beam loss indicated the integral pressure in the beam pipe ~ 2-3 * 10⁻¹⁰ Torr

operation at design magnetic field & ramp rate

Electron cooling plateau

njection plateau

Collider magnets assembly and testing

 Cryogenic-tests per year:

 2016
 2017
 2018
 2019
 2020
 2021

 20
 60
 58
 76
 72
 ➡
 120

 Collider dipoles:
 100 % tested

 Collider quadrupoles:
 35 % tested


September 15, 2021

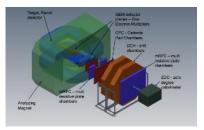
	total	prod. %
Dipole magnet coil	80+1	<mark>100</mark>
Quadrupole magnet coil	46+24	<mark>100</mark>
Corrector magnet coil	124+4	75
Final focus quadrupole coil	12	20
Vertical bending magnet coil	8	20
Dipole magnet heat screen	80+1	<mark>100</mark>
Quadrupole magnet heat screen	46+12	<mark>100</mark>
interconnections' heat screen	181	50
Cryogenic by-pass heat screens	2	20
Heat screens (ref. mag.& feed b-x)	2	80

Temperature sensor @ cold

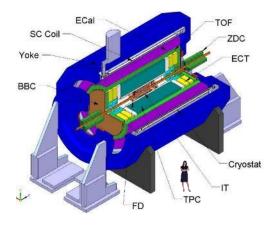
100

900

The kick-off meeting of MPD and BM@N Collaborations

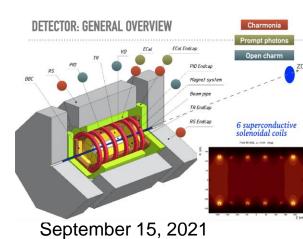

took place in Dubna on 11-13 April, 2018

https://indico.jinr.ru/conferenceDisplay.py?ovw=True&confld=385


Two Institutional Boards (IB) were formed for both collaborations: 18 members for BM@N, and 27 members for MPD. The bylaws have been adopted and signed by the IB's.

September 15, 2021

Baryonic Matter at Nuclotron (BM@N) Collaboration: 19 Institutions from 10 Countries, 234 participants spokesperson – M. Kapishin


in the first run (2018) > 200 M events accumulated targets: C, AI, Cu, Sn, Pb; beams: ¹²C⁶, ⁴⁰Ar¹⁶⁺,⁸⁴Kr²⁶

MultiPurpose Detector (MPD) Collaboration:42 Institutes from 12 Countries, > 500 participants

spokesperson – A. Kisiel

MPD systems: SC Magnet, TPC, TOR, ECal, FHCal, FFD etc.- are in production for the first run in 2022

Spin Physics Detector (SPD) Collaboration: 32 Institutes from 14 Countries,, ~ 300 participants

spokesperson – **A. Guskov**

CDR presented at **PAC PP**; **TDR** – under preparation.

Beam parameters and setup at different stages of the BM@N experiment

Year	2018 spring	2022 spring	2023	After 2023
Beam	Ar,Kr, C(SRC)	Xe (Kr)	Au (Bi)	Au (Bi)
Max. Intensity, Hz	0.5M	0.5M	0.5M	2M
Trigger rate, Hz	10k	10k	10k	up to 50k
general tracker Status	6 GEM half planes + 3 forward Si planes	7 GEM full planes + 3 forward Si planes	7 GEM full planes + 4 forward Si + 2 large STS planes	7 GEM full planes + 4 large STS planes
Experiment status	technical run+physics	stage 1 physics	stage1 physics	High rate stage 2 physics

MPD Hall – magnet assembly

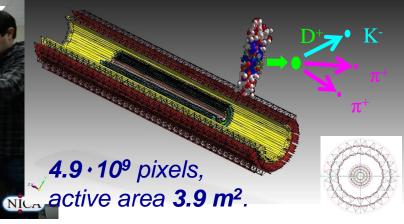
- installation of Solenoid into Magnet Yoke, position measurement ,adjustments;
- assembling the Magnet Yoke;
- *installation the Top platform;*
- cryogenic tests;
- field measurement.

TPC – basic tracker

frame: C3-C4 assembled C1-C2 assembled ROC: 24 / 26 produced

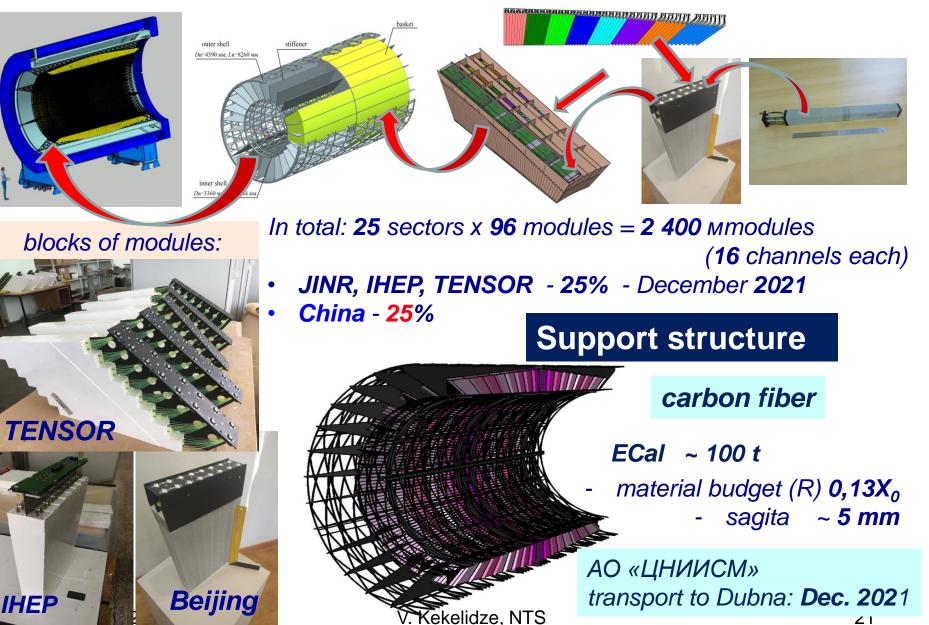
Time of flight system (TOF)

5/28 module assembled 128/280 ch. produced

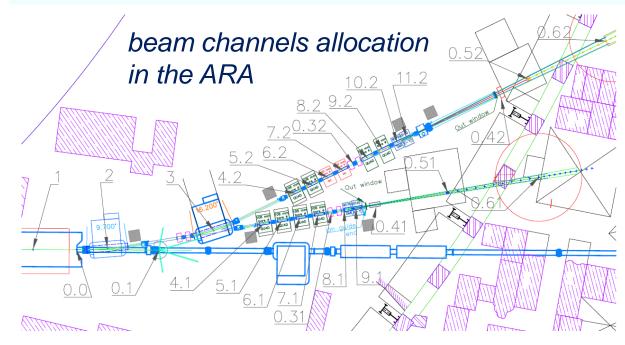

Inner Tracker

ALPIDE MAPS: in 5 cylinders of 2 barrels

All crates, HV & LV PS, FE & R-O electronics - in stock.



Electromagnetic calorimeter (ECal) system

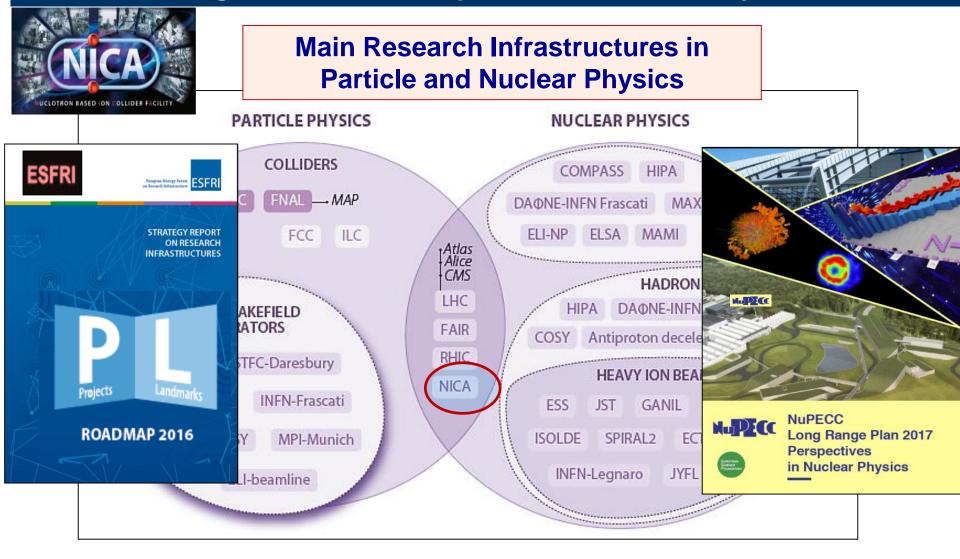

NICA **CONCEPTUAL DESIGN REPORT**

OF THE SPIN PHYSICS DETECTOR A. Guskov on behalf of the SPD proto-collaboration

> ~300 authors from 23 institutes from 10 countries + individual contributors

Applied Research Area

- Station Of Chip Irradiation
- Setup for Investigation of Medical Biological Objects


The applied research area development is in progress:

- design and construction of beam channels;
- vacuum systems and technologies upgrade;
- design and manufacture of chip irradiation station;
- design and construction of setups for biological research.

Station for Chip Irradiation

BARYONIC MATTER DENSITY FRONTIER

NICA is included in the ESFRI ROADMAP-2016 and in the NuPECC Long Range Plan 2017 - Perspectives in Nuclear Physics

Concluding remarks:

The NICA Complex being implemented at JINR is dedicated to the study of baryon-rich matter and spin physics, as well as providing infrastructure for applied research and innovations.
 The construction of the accelerator complex and BM@N, MPD and SPD detectors is progressing well; corresponding Collaborations are constantly expanding.

Cooperation in applied research and innovations

is currently underway,

and we are looking forward to establishing dedicated Collaborations.

Thank you !

September 15, 2021