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State Research Center -
Burnasyan Federal Medical
Biophysical Center of
Federal Medical Biological
Agency is the flagship
Institution of Russian
healthcare in the field of
radiobiology, radiation
medicine and radiation
protection.
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PenepansHoe MeAMKo-Buol

The main directions of radiobiological
research activities:

*Development of radioprotective
drugs, methods and approaches for
the prevention and treatment of
radiation injuries.

*Study of molecular and cellular
mechanisms of early and delayed
effects of exposure to ionizing
radiation.

*Development of diagnostic and
prognostic criteria and biomarkers of
radiation injury for the different tasks
of radiation medicine.




RADIATION DAMAGE TO DNA
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Yields of DNA Damage
produced in 1 cell by 1 Gray
~ 1,000 single strand breaks
~ 3,000 damaged bases

~ 25-40 double strand breaks
~ 190 multiply damaged sites

* The majority of cellular DNA
lesions caused by ionizing radiation
(IR)  significantly  differ  from
those caused Dby endogenous
sources In their physical and
chemical properties.

*The most Iimportant features of
radiation-induced DNA lesions are
their complexity and clustering.

= Among the various types of
primary DNA lesions produced by
lonizing radiation, DNA double-
strand breaks are of the most
biological relevance as relates to
radiological risks due to their high
potential to cause cell death,
mutagenesis and carcinogenesis.
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Fig 1. Pathways of double-strand break (DSB) rejoining and their hierarchy. Non-homologous end-joining (NHE]) is the first choice DSB repair
pathway in mammalian cells. However, pathways exploiting resection can be used if rapid repair by NHE] does not ensue. Homologous
recombination can be used in late S/G2 cells. Inaccurate NHE] can also arise. Alternative NHE] is predominantly only used when Ku or NHEJ
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recombination. NHE] can function in all cell cycle phases.
role promoting recovery from replication fork stalling in S phase but can also function to repair
radiation-induced two-ended double-strand breaks (DSBs) in late S/G2 phase using a sister chromatid. However, even in G2 phase, NHE] is the
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*DNA double-strand breaks can be
repaired by one of the two major
mechanisms: non-homologous endjoining
(NHEJ) or homologous recombination
(HR). NHEJ repair, involved in an
estimated ~ 70-80% of DNA double-strand
breaks, is cell cycle independent and fast,
taking approximately 30 minutes to
complete. However, NHEJ is error-prone
and can |lead to various genetic
abnormalities. In contrast, HR repair Is
errorfree and slow (> 7 h) and requires a
sister chromatid as a template for DNA
synthesis in the vicinity of a break on the
damaged chromatid. Therefore, this
pathway is active mainly in cells in S and
G2 cell cycle phases.



1. STUDY OF DNA STRAND-BREAK INDUCTION
AND REPAIR IN HUMAN MESENCHYMAL STEM
CELLS AND FIBROBLASTS
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Low doses of X-rays induce prolonged and ATM-independent
persistence of yH2AX foci in human gingival mesenchymal

stem cells

Andreyan N. Osipov*%34, Margarita Pustovalova’?, Anna Grekhova'*, Petr Eremin?,
Natalia Vorobyova®3, Andrey Pulin?, Alex Zhavoronkov+¢7, Sergey Roumiantsev?%2,

Dmitry Y. Klokov?, Ilya Eremin*
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Figure 1: Radiation dose-responses for YH2AX and pATM foci in MSCs. Cells were exposed to X-irradiation at various
indicated doses and fixed at 5 min (A) 10 min (B) 15 min (C) 30 min (D) 60 mm (E) and 120 min (F). Immuonofluorescence labeling for
YH2AX and pATM was performed as described in Materials and Methods. Number of foci for each protein and the number of co-localized
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foci were quantified and mean values of three independent experiments + SD are shown on the graphs.
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Figure 3: Kinetics of yH2AX, but not pATM, foci induced in MSCs is dose—dependent. C clh were expoaed 10 250 mGy
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Residual yH2AX foci induced by low dose x-ray radiation in bone
marrow mesenchymal stem cells do not cause accelerated senescence
in the progeny of inrradiated cells

MNMargarita Pustowvalowva™, Tatiana A. Astrelina®, Anna Grekhowa®™>% MNatalia Vorobyewva®=,
Anastasia Tswetkowa™ , Taisia Blokhina®®, Victoria Mikitina®, Yulia Suchkowva®, Daria Usupzhanowa®,
Vitalyi Brunchukow', Irimna Kobzewa', Tatiana Karasewva'. lvan V. Ozerowv™", Aleksandr Samoylow’,
Andrey Bushmanow'. Sergey Leonow®®, Ewgeny lzumchenko®, Alex Fhaworonkows, Dimitry
Klokow™", Andreyan M. Osipowl-=%5

Low dose X-rays induces persistent yH2AX foci Residual yH2AX foci induced by low-dose X-rays
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Low-dose X-rays do not cause an increase in the
vH2AX foci number in the progeny of irradiated cells
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activity in the progeny of irradiated cells
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Our results indicate that although excess yH2AX
focl were present at 24 h post-irradiation with 80
mGy, a finding that is commonly interpreted as
presenting mutagenic potential and subsequently
health risk, the progeny of the irradiated cells did
not display health abnormalities, such as
Increased senescence, suppressed proliferation
and high yH2AX foci rates. We conclude that
accurate Interpretation of YH2AX  foci
measurements may require additional assays,
such as quantification of pATM foci, proliferation
and senescence, over extended periods of time.
Therefore, care must be taken when using YH2AX
In  biodosimetry or In accessing individual
rediosensitivity since time of sampling after
iIrradiation may yield inconsistent results.



2. DOSE-RATE EFFECT IN RADIATION
BIOLOGY: DNA DOUBLE-STRAND
BREAKS REPAIR EFFICIENCY
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Figure 3: yH2AX foci formation in proliferating vs. resting MSCs exposed to prolonged X-ray irradiation. (a)
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Research Paper

yH2AX, 53BP1 and Rad51 protein foci changes in mesenchymal
stem cells during prolonged X-ray irradiation

Anastasia Tsvetkova®, Ivan V. Ozerov**, Margarita Pustovalova®*, Anna Grekhova®*=,
Petr Eremin®, Natalia Vorobyeva®®, Ilya Eremin®, Andrey Pulin®, Vadim Zorin®7,
Pavel Kopnin®, Sergey Leonov®, Alex Zhavoronkov®, Dmitry Klokov'® and Andreyan
M. Osipov>*4*

The experimental results indicate
that kinetics of DNA double-strand
break formation upon continuous
exposure to X-ray radiation at a
dose-rate of 4.5 mGy/min monitored
in cells using yYH2AX/53BP1 foci
consists of two components: i) linear
accumulation with time (dose) of
exposure, and i) plateau. The
plateau reflects the result of two
simultaneously occurring processes
iIn continuously exposed cells: DSBs
induction and their repair.
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Figure 4: Rad51 foci formation in proliferating vs. resting MSCs exposed to prolonged X-ray irradiation. (a) Representative
microphotographs of immunofluorescently stained irradiated MSCs showing Ki67 (green) and RadS1 foci (red). DAP] counterstaining is
shown in blee. (b) Quantification of Rad$! in Ki6T+ vs Ki67- MSCs exposed to proloaged (270 mGy/h) X-ray irmadiation. Mean foci
numbers derived from at least three independent experiments are shown. Error bars show SE. (¢) Histograms showing percent of cells with
a certain number of RadS| foci,
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Figure 6: S§/G2 cell cycle phases changes in MSCs exposed to prolonged irradiation. (a) Repeesentative micropbotographs
of immunofiuorescently stained irradiated MSCs showing CENPF (green) DAPI counterstaining (blue). (b) Quantification of CENPF+
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Our data suggest  that prolonged
exposure of cells to ionizing radiation leads to
accumulation of cells in S/G2 phases of the cell
cycle and associated activation of homologous
recombination.

Also, proliferation status may significantly
affect the Dbiological outcome, since
homologous repair is not activated in rssting
cells.



Our finding show principal differences Iin the
contribution of non-homologous end-joining and
homologous recombination to the repair of DNA
double-strand breaks in mammalian cells irradiated at
different dose-rates. During continuous irradiation,
accumulation of cells in S/G2 phases and associated
activation of homologous recombination DNA DSB
repair pathway are observed. The observed
activation of the error-free DNA DSB repair pathway
suggests compensatory adaptive mechanisms that
may help alleviate long-term biological consequences
and could potentially be utilized both in radiation
protection and medical practices.



3. STUDIES OF THE MECHANISMS OF
ACQUIRED DRUG RESISTANCE OF CANCER
CELLS
(in cooperation with Laboratory of Clinical
and Genomic Bioinformatics, I.M. Sechenov
First Moscow State Medical University and
OmicsWay Corp. (USA))
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Acquired resistance to tyrosine kinase inhibitors may be linked
with the decreased sensitivity to X-ray irradiation

Maxim Sorokin®?3, Roman Kholodenko?, Anna Grekhova“ Maria Suntsova'®,
Margarita Pustovalova“®, Natalia Vorobyeva'“, Irina Kholodenko¢, Galina
Malakhova?, Andrew Garazha'?, Artem Nedoluzhko? Raif Vasilov?, Elena
Poddubskaya®, Olga Kovalchuk®, Leila Adamyan?, Vladimir Prassolov®, Daria
Allina**, Denis Kuzmin*?, Kirill Ignatev'?, Andreyan Osipov** and Anton Buzdin?3*57
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Figure 1: Schematic representation of alterations in “ATNM Pathway (DNA repair)” molecular pathway after 4 weeks
of incubation with target drugs. The pathway is shown as an interacting network. where green arrows indicate activation, red arrows
— mnhibition. Pathway Activation Strength score 1s shown for each sample. Color depth corresponds to the logarithms of the case-to-normal
(CNR) expression rate for each node, where “normal” 1s a geometric average between control samples. Exact CNR values are provided in
Supplementary Table 2.



For the SKOV-3 (ovarian carcinoma), but not NGP-
127 (neuroblastoma) cells, for the the clinically
relevant tyrosine kinase inhibitors (TKIs) Sorafenib,
Pazopanib and Sunitinib, we noticed statistically
significant increase in capacity to repair radiation-
iInduced DNA double strand breaks compared to
naive control cells not previously treated with TKIs.
These peculiarities were linked with the increased
activation of ATM DNA repair pathway in the TKI-
treated SKOV-3, but not NGP-127 cells. Our results
provide a new cell culture model for studying anti-
cancer therapy efficiency and evidence that there
may be a tissue-specific radioresistance emerging
as a side effect of treatment with TKIs.



4. STUDIES OF THE MECHANISMS OF
RADIORESISTANCE OF CANCER
CELLS
(in cooperation with School of
Biological and Medical Physics,
Moscow Institute of Physics and
Technology)
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The p53-53BP1-Related Survival of A549 and H1299
Human Lung Cancer Cells after Multifractionated

Radiotherapy Demonstrated Different Response to
Additional Acute X-ray Exposure

Margarita Pustovalova 1'2*, Lina Alhaddad '), Nadezhda Smetanina 20, Anna Chigasova -3,

Taisia Blokhina 124, Roman Chuprov-Netochin !, Andreyan N. Osipov "2%* and

Sergey Leonov 1-5-*

Our study provides strong
evidence that different DNA repair
mechanisms are activated by
multifraction radiotherapy (MFR),
as well as single-dose IR, and
that the enhanced cellular
survival after MFR is reliant on
both p53 and 53BP1 signaling
along with non-homologous end-
joining (NHEJ). The results

are of clinical significance as they
can guide the choice of the most
effective IR regimen by analyzing
the expression status of the p53—
53BP1 pathway in tumors and
thereby maximize therapeutic
benefits for the patients while
minimizing collateral damage to
normal tissue.



5. DNA DOUBLE-STRAND BREAK REPAIR
EFFICIENCY IN CANCER CELLS EXPOSED TO
LASER-DRIVEN ULTRASHORT ELECTRON
BEAMS
(in cooperation with Semenov Institute of
Chemical Physics (Russian Academy of
Sciences), CANDLE Synchrotron Research
Institute (Armenia), Yerevan State University
and Institute of Molecular Biology (Armenia))



Over the past few years, a new direction in radiation biology related
to the study of the mechanisms of ultrashort pulsed radiation (femto-
and picoseconds) effects formation has begun to develop. In case of
such short pulse duration only ionization and the formation of free
radicals may occur, while all chemical processes begin later. At the
same time, during the pulse, the peak dose-rate values up to
GGy/sec may be achieved. The radiobiological effects of irradiation
with this kind of characteristics (ultrashort duration and ultrahigh
peak-dose) are poorly studied.
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Low Repair Capacity of DNA Double-Strand Breaks
Induced by Laser-Driven Ultrashort Electron Beams

in Cancer Cells

Nelly Babayan 2, Natalia Vorobyeva 3, Bagrat Grigoryan >(©, Anna Grekhova *¢,

Margarita Pustovalova 7, Sofya Rodneva 3, Yuriy Fedotov 3, Gohar Tsakanova

Rouben Aroutiounian 2 and Andreyan Osipov 347/*
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In general, the obtained data indicated slower DSB
repair rate Induced by ultrashort pulsed
irradiation, compared to the ones Iinduced by quasi-
continuous irradiation. The pulse duration of
ultrashort irradiation is only 0.4x10-1? s, however, a huge
peak dose-rate of 1.6x101° Gy/s per pulse
IS achieved during the pulse. Apparently, it increases the
possibility of complex difficulty repairable
DSBs formation. Further detailled studies of the
physicochemical mechanisms of biological effects
Induced by sub-picosecond pulse irradiation are needed.



6. Molecular effects of Tightly Focused
Femtosecond Laser Radiation in Cultured
Human Cells
(in cooperation with Semenov Institute of
Chemical Physics (Russian Academy of
Sciences))
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Femtosecond laser radiation in the near infrared
range (800—1100 nm) is widely used in biological
research, including as an ultra-precise scalpel for
nanosurgical treatment. The physicochemical
basis of this application is based on the principles
of nonlinear absorption of laser pulses with a high
peak power and the subsequent formation of low
density plasma in the absorption region of a
femtosecond laser pulse. Our results showed that
femtosecond laser pulses of 101 W-cm2 peak
power density led to the formation of linear tracks
consisting both of XRCC1 and yH2AX protein foci
localized in the places where the laser beam
passed through the cell nuclei. A further increase
in the pulse power density to 4 x 101 W-cm led
to the appearance of nuclei with total
Immunocytochemical staining for XRCC1 and
yH2AX on the path of the laser beam. Thus,
femtosecond laser radiation can be considered as
a tool for local ionization of biological material,
and this ionization will lead to similar effects
obtained using ionizing radiation.



7. EFFECTS OF COMBINED EXPOSURE TO
MODELED RADIATION AND GRAVITATION
FACTORS OF THE INTERPLANETARY FLIGHT
(in cooperation with Institute of Biomedical
Problems of the Russian Academy of Sciences
and Joint Institute for Nuclear Research )
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Effects of combined exposure to modeled radiation and gravitation factors | %&&

of the interplanetary flight: Monkeys’ cognitive functions and the content of
monoamines and their metabolites; cytogenetic changes in peripheral
blood lymphocytes
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Fig. 7. The dynamics of the proportion of yH2AX-positive peripheral blood
lymphocytes in rhesus macaques after the end of a complex exposure, which
modeled space flight conditions (hypokinesia + prolonged y-irradiation +
accelerated '2C ion exposure). The data are shown as the arithmetic mean +
standard error; statistical significance was tested using the Student t-test. * - p
value < 0.05. The dashed line shows the control values; the solid line shows the

exp animals’ data.

In our research, 24 h after the end of a
complex exposure, which modeled space flight
conditions (hypokinesia + prolonged y-ray
irradiation + accelerated 2C ion exposure),
flow cytometry analysis of yH2AX-positive
cells showed a statistically significant (p =
0.014) 2.6-fold increase in the percent of
YH2AX-positive peripheral blood lymphocytes
compared with the control level (Fig. 7).
Contrary to our expectations, 19 days after the
end of the exposures, only a minor decrease
was observed in the percent of yH2AX-
positive cells (down to 2.3 times the control
level, p = 0.011). Moreover, even after 42
days, the percent of yH2AX-positive cells
remained increased (2.1 times the control
level, p = 0.042). Then, the yH2AX-positive
cell percent slowly decreased; by

the 92nd day, its excess over the control level
was not statistically significant (p = 0.063).
However, up to 446 days, a clear trend for
maintaining an increased yH2AX-positive cell
yield was observed.
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