

ESA Strategy on Radiation Testing Capabilities

Anastasia Pesce Head of ESA Radiation Hardness Assurance and Component Analysis Section

NICA workshop September 16, 2021

ESA UNCLASSIFIED – For Official Use

We Are ESA

EUROPE'S GATEWAY TO SPACE

WHAT	22 Member States, 5000 employees	
WHY	Exploration and use of space for exclusively peaceful purposes	
WHERE	HQ in Paris, 7 sites across Europe and a spaceport in French Guiana	
HOW MUCH	€6.68 billion = €12 per European per year	

± _ (3)

Some of Today and Tomorrow's Science Missions (1)

÷

٠

Some of Today and Tomorrow's Science Missions (2)

÷

 $\boldsymbol{*}$

ESA-DEVELOPED EARTH OBSERVATION MISSIONS

- The ExPeRT programme defines and performs the initial phases of exploration missions to identify critical technologies and contribute to making them reality.
 - ExPeRT is committed to establish collaborations with agencies, industries and academia to create exploration opportunities and welcomes the involvement of newcomers and small entities.

Definition Implementation Operation

> OARMAN (3U) studying atmosphere re-entry

> > SIMBA (3U) monitoring climate variables

demonstrating

GOMX-3 (3U) demonstrating new platform technologies

PICASSO (3U) studying the atmosphere

PRETTY (3U) demonstrating GNSS reflectometry

> GOMX-5 (12U) demonstrating next generation constellation technologies

> > PROBA-V Companion (12U) Imaging Vegetation

RadCube (3U) measuring space radiation and magnetic field

Sunstorm (2U) measuring X-Ray fluxes

GENA-SAT (6U & 12U) demonstrating commercial IOD/IOV services

CubeSpec (6U) stellar spectroscopy from space

RACE (2x6U) demonstrating rendezvous and docking

CSC (2x6U) EC IOD/IOV

Juventas & Milani (2x observing asteroid deflection assessment (HERA S2P)

M-ARG0 (12U)

in-situ resources

demonstrating asteroid rendezvous and identifying

LUMI0 & VMM0 (2x12U) measuring lunar surface impact hazards & in-situ resources

European Space Agency

\rightarrow ESA'S TECHNOLOGY CUBESAT FLEET

Funded in GSTP Fly unless otherwise stated

Space Radiation and Effects on Electronics

Radiation belts trapped by planets' magnetospheres, consisting mostly of protons and electrons

Particles originating from the activity of the Sun, which include also heavy ions

Cosmic rays with very high energy

Mission SEE RHA Process (ref ECSS-Q-ST-60-15C)

▬ ▮ ▶ # = :: || = != = || || = = :: = || || = + • :: :

European Space Agency

European Irradiation Facilities for SEE Test

https://irradiation-facilities.web.cern.ch/

European Irradiation Facilities for SEE Test Beam Energies

Standard	<10 MeV/n
Energy	
High	10 - 100 MeV/n
Energy	
Very High	100 MeV/n – 5 GeV/n
Energy	
Ultra High	5-150 GeV/n
Energy	

Availability

[Ref: The challenges of Testing at European Irradiation Facilities A. Pesce, A. Costantino ESCCON2021]

			W
Facilities	Energy (MeV/nucleon)	Available cocktail	Availability per year
UCL HIF (Louvain-la- Neuve, Belgium)	8-10 MeV/n	9 species from C to Xe	About 16 weeks
RADEF (Jyväskylä,Finland)	22 MeV/n , 16.3 MeV/n, 9.3 MeV/n before	O, Fe, Kr 6 ion species, from O to Xe (7 ion species,from N to Xe)	About 12 weeks
KVI CART (Groningen, Netherlands)	30 MeV/n	4 species, from Ne to Xe	1-2 weeks
GANIL G4 (Caen, France)	27 to 60MeV/n	One species per experiment, Ar, Kr, Xe or Pb	1-2 weeks
GSI SIS18 (Darmstadt, Germany)	50 MeV/n to 1-1.5 GeV/n	One species per experiment, can be from proton to U	Less than 1 week Only scientific experiments
CERN CHARM or North Area (Geneva, Switzerland)	6-160 GeV/nucleon	One species per experiment	Less than 1 week

+

ESA beam time used at ESA supported facilities

Aim at support facilities developments on **beam quality, dosimetry** and includes an annual fixed amount of hours for irradiations tests for

ESA R&D developments

2021_02_24 CMOS image sensor development 2021_02_23 SDRAM memories 2021_02_23 SiC qualification and other mosfet screening 2021_02_18 TIR(detector) 2021_01_21 HERA 2020_10_07 ASIC 2021_01_18 GaN MIM Capacitors 2020_12_11 Small study - intradie SRAM testing 2021_11_24 HERA - cubesat payload only 2020_11_23 SEE laser COTS screening 2020_11_22 FYS 2020_11_02 MEMS pressure modues 2020_10_16 Latchup testing of digital isolator 2020_10_09 GPU

2020_09_28 Phototransistor 2020_09_08 RACOCO 2020_09_07 MPCG 2020_09_06 GPU processors 2020_09_04 RADEM 2020_09_03 3Dnand 2020_09_01 GaN Devices 2020_09_02 SET 2020_09_01 Stuck bits on SDRAM 2020_08_31 Optical Fibers 2020_08_30 Stuck bits on SDRAM 2020_08_10 Proba 3 2020_08_09 NG-LARGE 2020_08_08 NG-ULTRA

Evolution of the Technology Needs

Challenges: Limited range of heavy ions at Low Energy

Standard energy ions require sample preparation, delidding/decapping or Die thinning for flip chip to reach the active area with sufficient LET for testing and it may be not technically possible for certain technologies

Linear energy transfer and range

Range vs. LET

•

HI High Energy facilities- Challenges

Europe	Facilities	Energy (MeV/nucleon)	Availability per year		
	GANIL G4 (Caen, France)	27 to 60 MeV/n	1-2 weeks		
	GSI SIS18 (Darmstadt, Germany)	50 MeV/n to 1-1.5 GeV/n	Less than 1 week Only scientific experiments		

USA

Facilities	Energy (MeV/nucleon)	Availability per year
TAMU (College Station, TX, USA)	15 MeV/n 25 MeV/n 40 MeV/n	About 20-25 weeks
NSRL (Brookhaven, USA)	1500-217 MeV/n (light to heavy ions)	~20 weeks NASA funded or scientific proposals

Lack of radiation testing opportunities of High Energy Ion beams Currently only facilities in USA offer extensive High Energy Ion beams

After: **GRAND ACCELERATEUR NATIONAL D'IONS LOURDS** *Marie-Hélène MOSCATELLO DI GIACOMO* for the, G-RAD Workshop 2020

Requirements of beam quality for testing 1/3

Ref ESCC25100 SINGLE EVENT EFFECTS TEST METHOD AND GUIDELINES

https://escies.org/specfamily/view

Requirement	ESCC25100	=> Facility implementation	
LET	 the device is commonly considered immune to SEE if tested in normal incidence at a minimum LET of 60MeV.cm2/mg There is an increasing need to perform SEE test at lower and lower LET thresholds. LET disposure between 0.2 MeV/mg/cm² and 1.5 MeV/mg/cm². If possible implement a disposure of 4 LETs within this range Combination of ions, light to heavy species, covering LET at least equal to 38 MeVcm2/mg (Si) up to 60 MeVcm2/mg (Si) at the device sensitive volume, and with range at least of 1 mm (Si). 	LET up to 60MeV.cm2/mg to consider a device immune to SEE (ECSS-Q-ST-60-15) LET up to 75MeV.cm2/mg to consider a device immune to SEE ref NASA/TM-20210018053 LET 10-60MeV.cm2/mg necessary to estimate cross section LET < 2 MeV.cm2/mg Advances technology nodes show an increase in SEE sensitivity at very low LETs	
Range	a minimum range of 40μ m in the target material is recommended. In linear devices and all devices with a relatively thick sensitive volume (>10µm like in bipolar, JFET, etc.), a minimum range of 60μ m is recommended. If technology analysis is available the beam energy and range should be such that the Bragg peak is placed beyond the sensitive volume.	Range >60um up to few mm	
Temperature	The temperature of the device under test shall be monitored and recorded unless otherwise agreed with the Customer.	Monitored as minimum, control of temperature (eg for SEL)	

· = ■ ▶ = = + ■ + ■ ≡ = = ■ ■ ■ ■ ■ ■ ■ ■ ■ = = = +

Requirements of beam quality for testing 2/3

Ref ESCC25100 SINGLE EVENT EFFECTS TEST METHOD AND GUIDELINES

https://escies.org/specfamily/view

Requirement	ESCC25100	=> Facility implementation
Tilting to explore other LETs values	For LETs not directly available, the device may be tilted to give an increased "effective LET"	Frame that can tilted (remotely)
Flux and energy uniformity	The radiation field shall be uniform to $\pm 10\%$ over the area of the device(s) under test in terms of both fluence and energy	±10% over the area of the device(s) for both energy and flux
Flux min-max	few 10 ions/cm2/s to at least 10E5 ions/cm2/s	Typical fluxes 1E4 – 1E6 ions/cm2/s

*

Requirements of beam quality for testing 3/3

Ref ESCC25100 SINGLE EVENT EFFECTS TEST METHOD AND GUIDELINES

https://escies.org/specfamily/view

Other general considerations		ESCC Basic Specification No. 25100 PAGE 19
Positioning DUTs	 Standard frame with design available to customer for preparation (eg see UCL frame on ESCIES.org radiation page) SEE Standard board SEE ref ESCC25100 Remote accurate control of the frame : multiple DUTS mounted on frame to be moved in the beam and testing without accessing/breaking vacuum Laser pointer for accurate positioning Visual feedback (camera) for correct positioning Vacuum Chamber Requirements (ref MIL-STD-750 TM1080) 	FIGURE 1 - EXAMPLE OF AN SEE TEST BOARD 25.4 cm 22.86 cm 11.43 cm 7.50 cm, 9.10 cm 5.04 cm 5.04 cm
Timing	Timing 1-2 hours for calibrations to set the cyclotron 15 min to change ions 15 min to access DUTS (vacuum)	available exposure area (shaded)
Cabling	Feedthroughs flanges and cable distances to be considered. Possibility to have test and monitoring equipment installed close to the beam line and accessible	
Space in control room/preparation of experiment	Additional area to prepare the SEE test set up and perform dry run	-7.90 cm, +12.45 cm

+

+

Evolution of the ESA Mission Requirements

New approach for optimising resources in accordance with mission profiles and objectives New working methods aiming at reducing development time and cost while balancing risk

ESA UNCLASSIFIED - For Official Use

European Space Agency

Evolution of the RHA Strategy

- > 5 Classes, 4 different sets of requirements tailored from ECSS-Q-ST-60-15
- Class V: Suggested to have a separate standard- Perhaps only PARD

ESA Website for Radiation Test data- **NEW** https://esarad.esa.int/

$ ightarrow$ C Ω $rightarrow$ https://esarad.esa.int										to the Not syncing 😰 …
										-
										esa
										0000
				ESA Badia	tion Test Database					
			This da	tabase contains radiation test reports of radiation tests (SEE TID	DD) on EEE components performed by ESA or by European partr	ners under ESA contracts.				
				For any further info or	enquire please contact: esarad@esa.int					
Show 20 🕶 entries										Search:
DUT part type	DUT Manufacturer	Report File	Radiation Test Type	Radiation Test Method	EPPL Familiy	EPPL Group	÷ Function	Technology	Report Source	Report Date
MT29F32G08CBACA	MICRON	Download	SEE (Single Events Effects) TID (Total Ionising Dose)	ESCC 22900 ESCC 25100	8 MICROCIRCUITS	29 MEMORY OTHERS	Multi-Level-Cell NAND Flash Memory		University of Padova	01/03/2013
UC2843 and UC2845	STmicroelectronics	Download	SEE (Single Events Effects)		8 MICROCIRCUITS	90 OTHER FUNCTIONS	Pulse Width Modulator		Hirex	21/06/2010
STRH40P10FSY3	STmicroelectronics	Download	TID (Total Ionising Dose)		12 TRANSISTORS	6 FET P CHANNEL	Power MOSFET		ESA	02/10/2009
2N3637	Microsemi	Download	DD (Displacement Damage)		12 TRANSISTORS	1 LOW POWER, NPN (< 2WATTS)			Hirex	03/06/2011
2N5154	Microsemi	Download	DD (Displacement Damage)		12 TRANSISTORS	2 LOW POWER, PNP (< 2WATTS)			Hirex	24/01/2012
GR740 System on chip	Cobham Gaisler	Download	SEE (Single Events Effects)		8 MICROCIRCUITS	10 MICROPROCESS/ MICROCONTROL /PER/PHER	System on chip		Cobham Gaisler A8	28/09/2020
OP-470A	Advanced Analog	Download	TID (Total Ionising Dose)	ESCC 22900	8 MICROCIRCUITS	50 LINEAR OPERATIONAL AMPLIFIER	Linear, Radiation Hardened, Low Noise, Quad Operational Amolifiers		Alter	12/11/2012
UC1846J-5P	Texas Instrument	Download	TID (Total Ionising Dose)	ESCC 22900	8 MICROCIRCUITS	69 LINEAR OTHER FUNCTIONS	High Speed Pulse Width Modulator Controller		Alter	12/11/2012
PM 139XMQMLR	Analog Devices	Download	TID (Total Ionising Dose)	ESCC 22900	8 MICROCIRCUITS	53 LINEAR VOLTAGE COMPARATOR	Quad voltage comparator		Alter	12/11/2012
OLH249.66099.4N49	4N49/Isolink, OLH249/Isolink, 66099/Micropac	Download	TID (Total Ionising Dose)	ESCC 22900	18 OPTO ELECTRONICS	1 OPTOCOUPLER	Photo-Transistor Optocoupler		EADS Astrium	25/11/2009
UC1843	Texas Instrument	Download	TID (Total Ionising Dose)	ESCC 22900	8 MICROCIRCUITS	69 LINEAR OTHER FUNCTIONS	Current Mode Pulse Width Modulator		Alter	11/12/2012
BUL54A	Semelab	Download	TID (Total Ionising Dose)	ESCC 22900	12 TRANSISTORS	3 HIGH POWER, NPN (> 2WATTS)	NPN Power Silicon Transistor		Fraunhofer Institut	04/12/2018
K6R4016V1C-TI10	Samsung	Download	SEE (Single Events Effects)	ESCC 25100	8 MICROCIRCUITS	20 MEMORY SRAM	256K x16 Bit High Speed SRAM		ESA	30/05/2016
25721600	STmicroelectronics	Download	TID (Total Ionising Dose)	ESCC 22900	12 TRANSISTORS	4 HIGH POWER, PNP (> 2WATTS)	PNP High Voltage Transitor		Fraunhofer Institut	27/09/2018
8D518	Semelab	Download	TID (Total Ionising Dose)	ESCC 22900	12 TRANSISTORS	3 HIGH POWER, NPN (> 2WATTS)	NPN Power Silicon Transistor		Fraunhofer Institut	04/12/2018
HCPL5701	Avago	Download	SEE (Single Events Effects)	Not specified	18 OPTO ELECTRONICS	1 OPTOCOUPLER	Optocoupler		TRAD	16/04/2012
AD565AT	Analog Devices	Download	TID (Total Ionising Dose)	ESCC 22900	8 MICROCIRCUITS	62 LINEAR DIGITAL TO ANALOG CONVERTER	12-BIT DAC		Altar	12/11/2012
OP27AJQMLR	Analog Devices	Download	TID (Total Ionising Dose)	ESCC 22900	8 MICROCIRCUITS	50 LINEAR OPERATIONAL AMPLIFIER	Low Noise, PrecisionOperational Amplifier		Alter	12/11/2012
2N7370	Microsemi	Download	TID (Total Ionising Dose)	ESCC 22900	12 TRANSISTORS	3 HIGH POWER, NPN (> 2WATTS)	NPN Power Silicon Transistor		Fraunhofer Institut	16/10/2018
8D516	Semelab	Download	TID (Total Ionising Dose)	ESCC 22900	12 TRANSISTORS	3 HIGH POWER, NPN (> 2WATTS)	NPN Power Silicon Transistor		Fraunhofer Institut	04/12/2018

Showing 1 to 20 of 153 entries

Previous 1 2 3 4 5 ... 8 Next

+

RHA in Space: What's Needed/ What's Next?

ESA Strategy on Radiation Testing Capabilities

→ THE EUROPEAN SPACE AGENCY

÷

Anastasia Pesce

Head of Radiation Hardness Assurance and Component Analysis Section

Anastasia.pesce@esa.int

Info on external facilities

https://escies.org/webdocument/showArticle?id=921&groupid=6 e-mail: ERFbooking@esa.int

Info on ESTEC Co60, Cf 252, SEE Laser Testing

e-mail: Co60.Facility.ESTEC@esa.int

European Space Agency

www.esa.int

ESA UNCLASSIFIED - For Official Use

__ || > += __ := || || __ := := || || || == == := := |0| || == += !

European Space Agency

Produced by

Radiation hardness Assurance and Component Analysis Section

Anastasia.pesce@esa.int