Multi-Purpose Detector

V. Kireyeu¹

¹VBLHEP, JINR

July 2, 2021

Chapter I Introduction

* * *

Introduction

Introduction: evolution of stars

Courtesy of Anna Watts

Introduction: the origin of elements

Nucleosynthesis after the Big Bang

Nuclear fusion in stars

Neutron capture in Red Giants (s-process) or in supernovae or neutron star mergers (r-process)

Gravitational wave detection from GW170817, August 17, 2017, LIGO-Virgo Collaborations

Introduction: quark matter in massive neutron stars?

M. Orsaria, H. Rodrigues, F. Weber, G.A. Contrera, Phys. Rev. C 89, 015806, 2014

Introduction: phase diagram of strongly interacting matter

Turko, L., Particles 2018, 1, 296-304

Early Universe:

- Large Hadron Collider (LHC)
- Relativistic Heavy Ion Collider (RHIC)

Neutron star mergers:

- Super Proton Synchrotron (SPS)
- Nuclotron based Ion Collider fAcility (NICA)
- Facility for Antiproton and Ion Research (FAIR)

Introduction: phase diagram of strongly interacting matter

Turko, L., Particles 2018, 1, 296-304

Heavy-Ion Collisions (HIC):

- Search for the critical point
- Study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma
- Search for the signatures of chiral symmetry restoration
- Study of the in-medium properties of hadrons at high baryon density and temperature

Introduction: baryon densities in central HIC

Courtesy of J. Randrup

Introduction: the "freeze-out" condition

Introduction: where we are?

Chapter II Observables

* * *

$$v_n = \langle cos[n(\phi - \Psi_n)] \rangle, \phi = atan rac{p_y}{p_x}$$

Observables: Strangeness

NA49 : Phys. Rev. C 77, (2008)

16 / 40

Observables: A polarization

 θ = angle between proton momentum and Λ polarization plane in Λ rest frame. α = 0.732 - Λ^0 decay assymetry parameter

Observables: "ice in fire"

Low energy: up to 20% of protons in central collisions are bound into the clusters.

High energy HIC – "Ice in a fire" puzzle: how the weakly bound objects can be formed in a hot environment?

Observables: Hypernuclei

IQMD: Ch. Hartnack

(Anti-)hypernuclei production:

- at mid-rapidity by Λ coalescence during expansion
- at projectile/target rapidity by re-scattering/absorption of Λ by spectators

Chapter III Multi-Purpose Detector (MPD) * * *

NICA basic facility

MPD: general view

Main target:

study of hot and dense baryonic matter at the energy range of max net baryonic density

MPD: Collaboration

12 Countries, more than 500 participants, 42 Institutes and JINR

- AANL, Yerevan, Armenia
- Baku State University, NNRC, Azerbaijan
- University of Plovdiv, Bulgaria
- University Tecnica Federico Santa Maria, Valparaiso, Chile
- Tsinghua University, Beijing, China
- USTC, Hefei, China
- Huzhou University, Huizhou, China
- Central China Normal University, China
- Fudan University, Shanghai, China
- Shandong University, Shandong, China
- IHEP, Beijing, China
- University of South China, China
- Three Gorges University, China
- Institute of Modern Physics, CAS, Lanzhou, China

• Palacky University, Olomouc, Czech Republic

- NPI CAS, Rez, Czech Republic
- Tbilisi State University, Tbilisi, Georgia

• Joint Institute for Nuclear Research

- FCFM-BUAP Puebla, Mexico
- FC-University of Colima, Colima, Mexico
- FCFM-UAS, Culiacán, Mexico
- ICN-UNAM, Mexico City, Mexico
- CINVESTAV, Mexico City, Mexico
- Universidad Autónoma Metropolitana, Iztapalpa, Mexico
- Institute of Applied Physics, Chisinev, Moldova
- WUT, Warsaw, Poland
- NCNR, Otwock Świerk, Poland
- University of Wrocław, Poland
- University of Silesia, Poland
- University of Warsaw, Poland
- Jan Kochanowski University, Kielce,

Poland

- Institute of Nuclear Physics, PAS, Cracow, Poland
- Belgorod National Research University, Russia
- INR RAS, Moscow, Russia
- NRNU MEPhI, Moscow, Russia
- Moscow Institute of Science and Technology, Russia
- North Osetian State University, Russia
- NRC Kurchatov Institute, ITEP, Russia
- Kurchatov Institute, Moscow, Russia
- St. Petersburg State University, Russia
- SINP, Moscow, Russia
- PNPI, Gatchina, Russia
- Vinča Institute of Nuclear Sciences, Belgrade, Serbia

Still growing, open for new member institutions!

MPD: physics program

Global observables

G. Feofilov, A. Ivashkin

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section measurement
- Event plane measurement at all rapidities
- Spectator measurement

Electromagnetic probes

V. Riabov, Chi Yang

- Electromagnetic calorimeter meas.
- Photons in ECAL and central barrel
- Low mass dilepton spectra in-medium modification of resonances and intermediate mass region

Spectra of light flavor and hypernuclei

- V. Kolesnikov, Xianglei Zhu
 - Light flavor spectra
 - Hyperons and hypernuclei
 - Total particle yields and yield ratios
 - Kinematic and chemical properties of the event
 - Mapping QCD Phase Diagram

Correlations and Fluctuations

K. Mikhailov, A. Taranenko

- Collective flow for hadrons
- Vorticity, Λ polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward correlations
- Jet-like correlations

Heavy flavor

Wangmei Zha, A. Zinchenko

- Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Explore production at charm threshold

MPD: 2 stages

MPD: Time Projection Chamber (TPC)

The main tracking detector

- The overall acceptance of $|\eta| < 1.2$
- The momentum resolution for charge particles under 3% in $0.1 < p_T < 1$ GeV/c.
- Two-track resolution of about 1 cm.
- Hadron and lepton identification by dE/dx measurements with a resolution better than 8%.

MPD: Time Projection Chamber (TPC)

The main tracking detector

- The overall acceptance of $|\eta| < 1.2$
- The momentum resolution for charge particles under 3% in $0.1 < p_T < 1$ GeV/c.
- Two-track resolution of about 1 cm.
- Hadron and lepton identification by dE/dx measurements with a resolution better than 8%.

MPD: Time of Flight system (ToF)

- Identification of charged hadrons (PID) at intermediate momenta (0.1 – 2 GeV/c).
- Based on Multigap Resistive Plate Chambers
- Maximum occupancy does not exceed 15% per channel.
- Geometrical efficiency \approx 95%.
- Time resolution of MRPC prototype \approx 60 ps.

MPD: Electromagnetic Calorimeter (ECAL)

- Measurements for electromagnetic and hadronic showers caused by particle interaction.
- Modules are Pb+Sc "Shashlyk" type alternating, light is carried by Wave Length Shifting Fibers to MAPD photon counters.
- Trapezoidal projective geometry.

MPD: Forward Hadron Calorimeter (FHCal)

- Measures the energy of non-interacting nucleons and fragments (spectators) in AA collisions.
- Determination of reaction plane and centrality
 - $\blacktriangleright\,$ the reaction plane with the accuracy $\approx 20^0 30^0$
 - \blacktriangleright the centrality with accuracy below 10%
- FHCal coverage: $2.2 < |\eta| < 4.8$

MPD: Fast Forward Detector, Inner Tracking System

Inner Tracking System (ITS)

- Fast and effective triggering of collisions
- Generation of the start pulse for the TOF

- Track reconstruction enhancement and identification of relatively rare events with (multistrange) hyperons.
- Cooperation with CBM/FAIR, ALICE/CERN.

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from $p_T=0.2$ to 2.5 GeV/c
- Extrapolation to full pT-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for pT-spectra and Gaussian for rapidity distributions)

Collective flow.

Interior of the MPD Hall

Chapter IV Summary

* * *

Summary

- Density frontier is less explored area of the QCD phase diagram and its study could lead to interesting discoveries.
- In the medium-term prospect the NICA complex will be the only facility in Europe providing high intensity ion beams from p to Bi in the energy range from 2 – 27 GeV (c.m.s.).
- All components of the MPD 1st stage configuration advanced in production, commissioning expected for 2021 and 2022
- Intensive preparations for the MPD Physics programme with initial beams at NICA