Hyperon polarization in PHSD model – recent status.

N.S. Tsegelnik¹,E.E. Kolomeitsev¹,and V. Voronyuk²

¹BLTP, JINR

²LHEP, JINR

Based on MA thesis of N.S. Tsegelnik

Relativistic thermal vorticity

$$\varpi_{\mu\nu} = \frac{1}{2}(\partial_{\nu}\beta_{\mu} - \partial_{\mu}\beta_{\nu}) \qquad \beta_{\nu} = \frac{u_{\nu}}{T}$$

Polarization due to spin-orbital interaction

F. Becattini et al. Eur. Phys. J. C75, no. 9, 406 (2015) Spin vector:

$$S^{\mu}(x,p) = -\frac{s(s+1)}{6m} (1 \pm n(x,p)) \varepsilon^{\mu\nu\lambda\delta} \varpi_{\nu\lambda} p_{\delta}$$

- s spin, p_{δ} 4 momentum of particle
 - Thermodynamic equilibrium.
 - The mechanism is not strictly defined.

Polarization of particle with spin

$$P = \frac{S^*}{s}$$

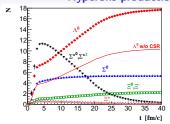
 S^* spin vector in rest frame

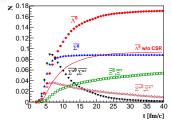
Vorticity meeting

▼ PHSD transport model

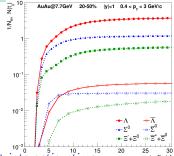
- Arr Partonic phase $\varepsilon > \varepsilon_{cr} = 0.5 GeV/fm^3$
- Parallel ensemble method
- Fluidization
 - Hydro velocity (Landau frame)

$$u_{\mu} T^{\mu \nu} = \varepsilon u^{\nu}$$

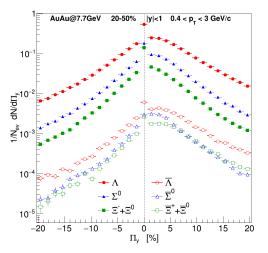

$$ightharpoonup$$
 "Fluid" $\varepsilon > 0.05 GeV/fm^3$


- Trace last interaction point for hyperons
 - ₩ We consider polarization of hyperons at last interaction point
 - inside fluid: set polarization
 - outside fluid: reset polarization
 - **\(\beta\)** Spin and strong decays $\Sigma^*, \Xi^* \to \Lambda$ are taken into account.
 - Spin vector $\sim s(s+1)$
 - Spin vector of daughter particle is equal to 1/3 of spin vector of Σ^*,Ξ^*

PHSD: W. Cassing, E.L. Bratkovskaya PRC 78 (2008) 034919; NPA831 (2009) 215; EPJ ST 168 (2009) 3

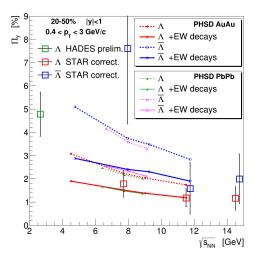


Hyperons production in AuAu@7.7GeV b=7.5fm



Numbers of strange particle/anti-particles as functions of collision time

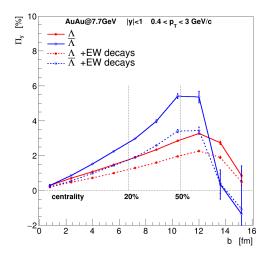
Probability of polarization



- Distribution is asymmetric
- If no fluid then $\Pi_u = 0$
- Remind that $C_{\Lambda \Sigma^0} = -1/3$

Def base Hyperons Polarization Conclusion

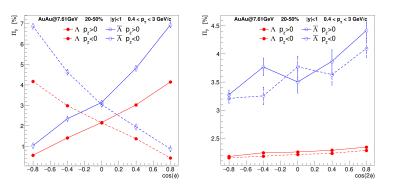
Polarization of Λ -hyperons



Strong decays are taken into account – difference in magnitude of feeddown between our calculations and Becattini&Karpenko

Vorticity meeting 27.07.2021 6 / 7

Def base Hyperons Polarization Conclusion


Polarization of Λ -hyperons

Strong decays are taken into account – difference in magnitude of feeddown between our calculations and Becattini&Karpenko

Vorticity meeting 27.07.2021 6 / 7

Polarization of Λ -hyperons

Strong decays are taken into account – difference in magnitude of feeddown between our calculations and Becattini&Karpenko

Vorticity meeting 27.07.2021 6 / 7

Conclusion

- $\bar{\Lambda}$ is more polarized then Λ hyperons.
- We underestimate polarization more algorithms are requested.

- Description of Σ^*, Ξ^* is important.
- Big feed-down effect from EW decays. Question about Σ^0 (Σ^{\pm}) production?

Thank you!