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Outline

The talk is divided into two parts :

➥ Part I is about the scheme of gauge-fixing for Abelian theory.

➥ Part II sets down the groundwork for the eBRST scheme for
non-Abelian theories. The work is still in progress.
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Motivations for gauge-fixing on the lattice

Wilson −→ Manifestly gauge-invariant formalism on a discrete spacetime
Euclidean lattice for gauge theories.

Group-valued link fields ⇒ algebra-valued gauge fields are compact.

Partition function −→ gauge-invariant well-defined integral with a
gauge-invariant Haar measure.

Hence, gauge-fixing generally not required on the lattice.
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Motivations for gauge-fixing on the lattice

Wilson −→ Manifestly gauge-invariant formalism on a discrete spacetime
Euclidean lattice for gauge theories.

Group-valued link fields ⇒ algebra-valued gauge fields are compact.

Partition function −→ gauge-invariant well-defined integral with a
gauge-invariant Haar measure.

Hence, gauge-fixing generally not required on the lattice.

Nielsen-Ninomiya theorem : fermion species doubling
⇒ Need to explicitly break chiral symmetry by

lattice fermions

Lattice chiral gauge theories break gauge invariance.
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Lattice Chiral Gauge theories (ChLGT) / Rough Gauge Problem

Two ways to construct a genuinely ChLGT :

➪ modify chiral symmetry on lattice −→ Ginsparg-Wilson relation [Luescher
1999,2000]

➪ try to mend explicitly broken theory

➥ longitudinal gauge degrees of freedom (lgdof) couple with the physical
degrees of freedom due to the broken symmetry ⇒ destroy chiral nature of
fermion spectrum
[Bock, De, Smit, Nucl. Phys. B388, 243 (1992), Golterman, Petcher, Smit, Nucl.

Phys. B370, 51 (1992)]

➥ non-perturbative rough gauge problem
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Lattice Chiral Gauge theories (ChLGT) / Rough Gauge Problem

Two ways to construct a genuinely ChLGT :

➪ modify chiral symmetry on lattice −→ Ginsparg-Wilson relation [Luescher
1999,2000]

➪ try to mend explicitly broken theory

➥ longitudinal gauge degrees of freedom (lgdof) couple with the physical
degrees of freedom due to the broken symmetry ⇒ destroy chiral nature of
fermion spectrum
[Bock, De, Smit, Nucl. Phys. B388, 243 (1992), Golterman, Petcher, Smit, Nucl.

Phys. B370, 51 (1992)]

➥ non-perturbative rough gauge problem

Way to tackle → give dynamics to the lgdof → gauge-fixing.
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Detour

Wilson’s 1973 paper showed confinement for non-abelian theories on the lattice →
similar calculation holds for U(1).

Simulations showed a weak gauge-coupling Coulomb phase (with free massless
photons) and a strong coupling phase with nontrivial properties (gaugeballs, etc.)
separated by a weak first-order transition at g ≈ 1.

⇒ Continuum limit cannot be taken.
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Detour

Wilson’s 1973 paper showed confinement for non-abelian theories on the lattice →
similar calculation holds for U(1).

Simulations showed a weak gauge-coupling Coulomb phase (with free massless
photons) and a strong coupling phase with nontrivial properties (gaugeballs, etc.)
separated by a weak first-order transition at g ≈ 1.

⇒ Continuum limit cannot be taken.

Extensions of the pure U(1) theory on the lattice have showed continuous phase
transitions where continuum limit can be taken. All these continuum limits are the
expected trivial theory of free photons → no non-triviality observed.
[Vettorazzo, de Forcrand, Nucl. Phys. B 686 (2004)]
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Fixing the gauge

We need to tame the redundant degrees of freedom.

Standard Fadeev-Popov −→ fails non-perturbatively.
Neuberger’s theorem ⇒ BRST symmetry renders any gauge-invariant observable

an indeterminate 0/0 form
(due to cancellation among lattice Gribov copies).
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We need to tame the redundant degrees of freedom.

Standard Fadeev-Popov −→ fails non-perturbatively.
Neuberger’s theorem ⇒ BRST symmetry renders any gauge-invariant observable

an indeterminate 0/0 form
(due to cancellation among lattice Gribov copies).

Goals:

➪ break BRST symmetry on the lattice.

➪ to achieve renormalizable Lorentz gauge in the continuum,

SGF =
1

2ξ
(∂µAµ)

2

enabling weak-coupling perturbation theory (WCPT) around a unique
minimum.
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Fixing the gauge

We need to tame the redundant degrees of freedom.

Standard Fadeev-Popov −→ fails non-perturbatively.
Neuberger’s theorem ⇒ BRST symmetry renders any gauge-invariant observable

an indeterminate 0/0 form
(due to cancellation among lattice Gribov copies).

Goals:

➪ break BRST symmetry on the lattice.

➪ to achieve renormalizable Lorentz gauge in the continuum,

SGF =
1

2ξ
(∂µAµ)

2

enabling weak-coupling perturbation theory (WCPT) around a unique
minimum.

Naive transcription on the lattice fails

➪ No unique vacuum ; standard perturbation theory fails

➪ Dense set of Gribov copies

➪ Neuberger’s theorem : Exact BRST symmetry leading to 0/0 form.
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New proposal : The Regularization

➪ The proposed action for the compact gauge-fixed U(1) theory, where the ghosts
are free and decoupled:

S[U ] = Sg [U ] + Sgf [U ] + Sct[U ].

where Sg [U ] =
1

g2

∑

xµ<ν

(1− ReUµνx) is usual Wilson plaquette action.
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New proposal : The Regularization

➪ The proposed action for the compact gauge-fixed U(1) theory, where the ghosts
are free and decoupled:

S[U ] = Sg [U ] + Sgf [U ] + Sct[U ].

where Sg [U ] =
1

g2

∑

xµ<ν

(1− ReUµνx) is usual Wilson plaquette action.

➪ Golterman and Shamir proposed the higher derivative (HD) gauge-fixing term

Sgf (U) ≡ SHD(φ, U)|φx=I ; SHD = κ̃





∑

x,y

φ†
y�

†
yx�xyφy −

∑

x

BxBx





�xy(U) =
∑

µ

(

δy,x+µUxµ + δy,x−µU
†
x−µ,µ − 2δyx

)

Bx =
∑

µ

(

Vxµ + Vx−µ,µ

2

)2

, Vxµ =
1

2i

(

φ†
xUxµφx+µ − h.c.

)

➪ Equivalent “Higgs” (with φ fields) and vector picture(without) → related by a
gauge transformation. We work in the vector picture.
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The Regularization : Features

The HD term satisfies all desirable properties discussed earlier.

Sgf → 1
2α

(∂µAµ)
2+ irrelevant terms, where α = 1/2κ̃g2

The action has an unique absolute minimum at Uxµ = exp igAµx = I, thus validating
weak coupling perturbation around g = 0 and κ̃ = ∞.

Determine the form of the counterterms needed to recover the gauge symmetry by
power counting.
It turns out that the most important gauge counterterm is the gauge field mass
counterterm, given by,

Sct = −κ
∑

µx

(
Uµx + U†

µx

)
.

It alone leads to a continuous phase transition where the φ fields decouple and the
gauge symmetry is recovered.
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Previous work

Constant field approximation of the classical potential shows a phase transition at
κ = 0 between a broken gauge symmetry phase (FM) and a phase with broken
Euclidean symmetry (FMD), at which point the gauge symmetry is restored.
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Previous work

Constant field approximation of the classical potential shows a phase transition at
κ = 0 between a broken gauge symmetry phase (FM) and a phase with broken
Euclidean symmetry (FMD), at which point the gauge symmetry is restored.

The HD gauge-fixing proposal, studied extensively in the weak coupling region
(Bock et al 2000) verifies the above result. For sufficiently large coefficient κ̃, there
is a novel continuous phase transition between FM and FMD phases. Approaching
the transition from the FM-side, we obtain free massless photons only and the scalar
fields (lgdof) decouple. These results have been explicitly verified in weak gauge
coupling region using both perturbative analysis and by numerical simulations.
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Previous work

Constant field approximation of the classical potential shows a phase transition at
κ = 0 between a broken gauge symmetry phase (FM) and a phase with broken
Euclidean symmetry (FMD), at which point the gauge symmetry is restored.

The HD gauge-fixing proposal, studied extensively in the weak coupling region
(Bock et al 2000) verifies the above result. For sufficiently large coefficient κ̃, there
is a novel continuous phase transition between FM and FMD phases. Approaching
the transition from the FM-side, we obtain free massless photons only and the scalar
fields (lgdof) decouple. These results have been explicitly verified in weak gauge
coupling region using both perturbative analysis and by numerical simulations.

Manifestly local abelian chiral gauge theories on the lattice was succesfully shown for
Wilson fermions (Bock et al 1998) and also for lattice domain wall fermions
(Basak, De 2001) with the HD gauge-fixing proposal.
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Previous work : Weak coupling phase diagram

Schematic phase diagram for
weak coupling at a fixed g < 1.

Earlier results have been done with the above
action either in the reduced limit or in the weak
coupling region in very small lattice sizes.

The question now arises as to what happens in the
strong coupling region. Knowledge about a broad
range of gauge coupling is also required to
understand the equivariant BRST gauge-fixing
proposal for non-Abelian gauge theories on the
lattice.
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Our strong coupling study : Algorithms used

➪ Hybrid Monte Carlo algorithm : Needed due to the HD term in the action.
Simulation done in lattice volumes 104, 124, 164, 204, 244

Multihit Metropolis algorithm was tried but it fails as the gauge-fixing coupling gets

stronger i.e. due to the strong influence of HD term.

➪ Observables:

Eκ =
1

4L4

〈

∑

x,µ

ReUµx

〉

, V =

〈

√

√

√

√

1

4

∑

µ

(

1

L4

∑

x

ImUµx

)2 〉

➪ Quenched chiral condensate using staggered fermions

➪ Gauge & scalar field propagator
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Results: Strong coupling phase diagram / Tricritical point
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Existence of tricritical point

where order of FM-FMD

transition changes.

Continuous FM-FMD transition,

for sufficiently large value of κ̃,

with same properties as in the

weak gauge coupling has been

obtained → indicates that

features governed are by the

same perturbative fixed point.
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First order vs Continuous phase transition
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Figure: First order transition. Histogram
shows double peak at κ = −1.000 which is a
failsafe signature for first order transitions.
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Inverse photon propagator

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1  2  3  4  5

p̂2

G-1
µµ

  g = 1.3
8324 lattice

∆κ = κ - κc = 0.03

κ~ = 0.7
κ~ = 0.6
κ~ = 0.5

 0  0.2  0.4  0.6  0.8
 0

 0.2

 0.4

 0.6

 0.8

κ~ = 0.6

κ ↓
-0.940
-0.980
-1.040
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transition

➪ The FM-FMD transition is ap-
proached from the FM side.

➪ Slope of the straight line fits in-
creases with increasing κ̃. Non-unity
slope suggests field renormalization
constant Z but trend suggests ap-
proach towards the perturbative
point with free photons.

➪ The vanishing y-intercept shows zero
photon mass and thus recovery of
gauge symmetry near the FM-FMD
transition.
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Results: Quenched chiral condensate
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➪ Near the tricitical point, quenched chi-
ral condensate was calculated with KS
fermions.

➪ Chiral transition occurs near the tri-
critical point at our precision.

➪ Nontrivial physics if nonzero chiral
condensate occurs in the continuous
side of the FM-FMD transition → con-
firmation needed on bigger volumes.
Ruled out at present.
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Conclusions

➪ The broad scan of the phase diagram reveals that the physics at strong coupling
for sufficiently large κ̃ is the same as the weak coupling region.

➪ Existence of a tricritical point which may lead to nontrivial physics in the
theory. Probing the physics near the tricritical point is difficult and requires
much more work.

➪ The chiral phase transition occurs at the tricritical point at our precision thus
ruling out possible non-triviality.

➪ This scheme of abelian gauge-fixing is crucial for the overall success of the
gauge-fixing approach to chiral gauge theories, the equivariant BRST scheme of
gauge-fixing, proposed by Schaden, Golterman and Shamir.

➪ Key results for one value of strong coupling has been published. (Phys. Rev.
D 93, 114504 (2016))
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Gauge-fixing Yang-Mills theory

Covariantly gauge-fixed YM theory

➤ transverse gauge coupling g
⇒ both asymptotically free

➤ longitudinal gauge coupling g̃ (g̃ = ξg2)

[M. Golterman and Y. Shamir, Phys. Rev. D 73 (2006)]

BRST symmetry ensures physics independent of g̃

But, longitudinal sector may be non-trivial
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Gauge-fixing Yang-Mills theory

Covariantly gauge-fixed YM theory

➤ transverse gauge coupling g
⇒ both asymptotically free

➤ longitudinal gauge coupling g̃ (g̃ = ξg2)

[M. Golterman and Y. Shamir, Phys. Rev. D 73 (2006)]

BRST symmetry ensures physics independent of g̃

But, longitudinal sector may be non-trivial

Question : Are the two sectors independent even
non-perturbatively?

First, construct non-perturbatively gauge-fixed theory
usual choice is on the lattice
but standard BRST formalism fails −→ Neuberger’s theorem

Proposal: Schaden first proposed the eBRST gauge-fixing scheme on the lattice
for SU(2) gauge theory in 1998. Golterman and Shamir later extended the idea
for general SU(N) theories with extended eBRST in the context of lattice chiral
gauge theories in 2004.

[M. Schaden, Phy. Rev. D59, 014508, M. Golterman, Y. Shamir, Phy. Rev. D70, 094506]
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eBRST in the continuum

The Yang-Mills Lagrangian with gauge coupling g is

LY M =
1

2g2
tr(F 2

µν), iFµν = [Dµ(V ), Dν(V )],

Dµ(V ) = ∂µ + iVµ, Vµ = V a
µ T a
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eBRST in the continuum

The Yang-Mills Lagrangian with gauge coupling g is

LY M =
1

2g2
tr(F 2

µν), iFµν = [Dµ(V ), Dν(V )],

Dµ(V ) = ∂µ + iVµ, Vµ = V a
µ T a

Gauge-fixing is done in the coset space G/H leaving atleast the maximal
Abelian subgroup H ⊂ G invariance of the action.

Vµ = V a
µ T a = Ai

µT
i +Wα

µ Tα

where index a runs over the generators of G,
i denotes generators forming the subgroup H and
α for the generators in the coset space G/H.

Mugdha Sarkar Gauge-fixing on the lattice 18/24



eBRST in the continuum

The Yang-Mills Lagrangian with gauge coupling g is

LY M =
1

2g2
tr(F 2

µν), iFµν = [Dµ(V ), Dν(V )],

Dµ(V ) = ∂µ + iVµ, Vµ = V a
µ T a

Gauge-fixing is done in the coset space G/H leaving atleast the maximal
Abelian subgroup H ⊂ G invariance of the action.

Vµ = V a
µ T a = Ai

µT
i +Wα

µ Tα

where index a runs over the generators of G,
i denotes generators forming the subgroup H and
α for the generators in the coset space G/H.

The gauge-fixing condition is chosen as

F(V ) = Dµ(A)Wµ ≡ ∂µWµ + i[Aµ,Wµ]

where Dµ(A) is a covariant derivative w.r.t. to H in the adjoint representation. The
ghost fields and the auxiliary field now reside in the coset space G/H (curly for
algebra):

C = CαTα, C = C
α
Tα and b = bαTα
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BRST vs eBRST

BRST

➪ δBΨ = −iCΨ, δBΨ
† = iCaΨ†T a,

➪ δBVµ = Dµ(V )C,

➪ δBC = −iC2,
δBC = −ib,

➪ δBb = 0,

➪ Condition of nilpotency : δ2Bf = 0

eBRST

➪ sΨ = −iCΨ, sΨ† = iCαΨ†Tα,

➪ sAµ = i[Wµ, C]H,
sWµ = Dµ(A)C + i[Wµ, C]G/H

➪ sC = (−iC2)G/H = −iC2 +X, where
X ≡ (−iC2)H,
sC = −ib,

➪ sb = [X,C],

➪ Equivariant nilpotency : s2 = δX , a
gauge transformation in H with
parameter X ∈ H
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General eBRST gauge-fixing term

eBRST and H transformations commute with each other.

Generic form of gauge-fixing action Sgf = sΣ where Σ is H-invariant.
Action is both invariant under eBRST and H transformations but breaks BRST
symmetry.

The gauge-fixing Lagrangian is given as

Lgf = s tr(2CF + iξg2Cb)

Upon simplification, we obtain a 4-ghost term and a bilinear ghost term. The
4-ghost term saves the partition function from vanishing as in the case of BRST.
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General eBRST gauge-fixing term

eBRST and H transformations commute with each other.

Generic form of gauge-fixing action Sgf = sΣ where Σ is H-invariant.
Action is both invariant under eBRST and H transformations but breaks BRST
symmetry.

The gauge-fixing Lagrangian is given as

Lgf = s tr(2CF + iξg2Cb)

Upon simplification, we obtain a 4-ghost term and a bilinear ghost term. The
4-ghost term saves the partition function from vanishing as in the case of BRST.

But this is not the most general action possible. An extended eBRST theory can be
constructed with eBRST and anti-eBRST symmetry. Reduces to above form for our
case SU(2)/U(1) (Special Class).
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SU(2)/U(1)

➪ SU(2)/U(1) gauge-fixed Lagrangian in the continuum after integrating out the
auxiliary field b

Lgf =
1

ξg2
tr(Dµ(A)Wµ)

2 + L
(2)
gh + ξg2L

(4)
gh

L
(2)
gh = −2tr(CDµ(A)Dµ(A)C) + 2tr([Wµ, C][Wµ, C])

L
(4)
gh = −tr(X̃2), X̃ = i{C, C̄}

Mugdha Sarkar Gauge-fixing on the lattice 21/24



SU(2)/U(1)

➪ SU(2)/U(1) gauge-fixed Lagrangian in the continuum after integrating out the
auxiliary field b

Lgf =
1

ξg2
tr(Dµ(A)Wµ)

2 + L
(2)
gh + ξg2L

(4)
gh

L
(2)
gh = −2tr(CDµ(A)Dµ(A)C) + 2tr([Wµ, C][Wµ, C])

L
(4)
gh = −tr(X̃2), X̃ = i{C, C̄}

➪ Action on the lattice

Sgf =
1

ξg2
tr
∑

x

(D−
µ Wxµ)

2 − ξg2tr
∑

x

(X̃2)

− 2tr
∑

x

([
UxµT3U

†
xµ,D

+
µCx

] [
T3,D

+
µCx

])
+ iWxµ

{
Cx,D

+
µCx

}

where Wxµ = −[UxµT3U
†
xµ, T3] = Wxµ +O(V 2), Ta = σa/2, lattice covariant

derivatives D+
µΦx = UxµΦx+µU

†
xµ − Φx,D

−
µ Φx = Φx − U†

x−µ,µΦx−µUx−µ,µ.

Important relation used
∑

i tr([Ti, A][Ti, B]) = −tr(AG/HBG/H)
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Action on the lattice; Ghost matrix

➪ The 4-ghost term is tackled by introducing an auxiliary field ρ ∈ H. The
action becomes

Sgf =
1

2ξg2

∑

xα

(D−
µ Wxµ)

2
α +

1

2ξg2

∑

x

ρ2x +
∑

xyαβ

CxαMxα,yβCyβ

➪ The ghost matrix Mxα,yβ = Ωxα,yβ(U) +Rxα,yβ(ρ) is real, with Ω being
symmetric and Rxα,yβ = δxyρxf3αβ being antisymmetric in the indices α and β.
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Action on the lattice; Ghost matrix

➪ The 4-ghost term is tackled by introducing an auxiliary field ρ ∈ H. The
action becomes

Sgf =
1

2ξg2

∑

xα

(D−
µ Wxµ)

2
α +

1

2ξg2

∑

x

ρ2x +
∑

xyαβ

CxαMxα,yβCyβ

➪ The ghost matrix Mxα,yβ = Ωxα,yβ(U) +Rxα,yβ(ρ) is real, with Ω being
symmetric and Rxα,yβ = δxyρxf3αβ being antisymmetric in the indices α and β.

➪ The ghost matrix is implemented in the HMC algorithm in the following way.
Integrating out ghost fields, we get

∫
DCDC exp(−CMC) = detM = |detM | sign(detM)

Since entries of M are real, |detM | can be simulated using HMC by introducing
a real ”pseudo-ghost” field φ,

|detM | =
√

det(MMT ) =

∫
Dφ exp

(
−(1/2)φT (MMT )−1φ

)
.

➪ The sign of the determinant is an important part of the whole scheme.
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Conclusion

➪ The eBRST scheme of gauge-fixing is a very novel approach to address the
problem of non-abelian lattice chiral gauge theories. Present work is only with
pure gauge. We intend to study the phase diagram which emerges from such
theories.

➪ Coding is a challenging task since keeping track of the sign of the determinant
will be a very difficult thing as it essentially boils down to tracking the zero
crossing of the smallest eigenvalues. We intend to use some kind of deflation
techniques with HMC.

➪ Ultimately, the abelian part of the theory has to be gauge-fixed by the HD
action described in the previous section.
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Thank you for your kind attention
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Backup slides
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Constant Field Approximation

The classical potential, obtained as leading order term in the perturbative
expansion of Uµx = exp igAµx with constant field approximation(no derivative
terms) around Uµx = 1, is

Vcl = κ



g2
∑

µ

A2
µ



+
g4

2α









∑

µ

A2
µ









∑

µ

A4
µ









For κ > 0, the gauge boson is massive and Vcl has a minimum at Aµ = 0. A
broken phase called FM phase.
For κ < 0, the minimum of Vcl shifts to a nonzero value:

Aµ = ±

(
α|κ|

3g2

) 1
4

for all µ

implying an unusual phase with broken rotational symmetry in addition to the
broken gauge symmetry – directional ferromagnetic phase (FMD).
For κ = 0 ≡ κc, the gauge boson becomes massless with the minimum of Vcl still
being the same ⇒ phase transition at this point.
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Extended eBRST

The action is also invariant under a ghost flip symmetry defined as
FC = C,FC = −C (FΦ = Φ for all physical fields)

This introduces the concept of anti-eBRST variation s̄ whose transformation
rules are obtained by ghost flip of the eBRST rules. Baulieu & Thierry-Mieg
introduced the concept of anti-BRST in 1982.

We thus have the extended eBRST algebra

s2 = δX , s̄2 = δX , {s, s̄} = δX̃

where X = (iC2)H , X = (iC
2
)H , X̃ = i

{
C,C

}
H

The most general action can be written as follows

Lgf = −ss̄ tr(W 2 + ξg2CC)

which is invariant under eBRST, anti-eBRST, ghost flip and H gauge symmetry.

For the case of SU(2)/U(1) (example of Special Class), the coset structure
constants are all equal to zero and a lot of simplifications occur.
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Algorithm : Discussions

An observable Θ(U) is calculated using a slightly modified partition function Z′ in
the following way :

Z ≡

∫
DUDφ exp

(
−[SW + S ′

gf +
1

2
φT (MTM)−1φ]

)
sign(detM)

Z′ ≡

∫
DUDφ exp

(
−[SW + SGF +

1

2
φT (MTM)−1φ]

)

〈Θ〉Z =
1

Z

∫
DUDφ exp

(
−[SW + SGF +

1

2
φT (MTM)−1φ]

)
(sign(detM))Θ(U)

=
Z′

Z

1

Z′

∫
DUDφ exp

(
−[SW + SGF +

1

2
φT (MTM)−1φ]

)
(sign(detM))Θ(U)

=
Z′

Z
〈(sign(detM))Θ〉Z′

Now for Θ = 1, we have 〈(sign(detM))〉Z′ = Z/Z′

∴ 〈Θ〉Z =
〈(sign(detM))Θ〉Z′

〈(sign(detM))〉Z′

Mugdha Sarkar Gauge-fixing on the lattice 28/24



Preliminary Result
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Plaquette vs β with Z′

From the invariance theorem, we
expect, for gauge-invariant
operator O,
〈O(U)〉unfixed = 〈O(U)〉eBRST.

Without taking into account the
sign changes, the figure
demonstrates which regions of the
phase space are affected to what
degrees due to the sign change.

The matrix inversion becomes
difficult with smaller κ̃ for values
of β around the crossover region,
which accounts for the missing
data points.

The plot indicates that the
eBRST gauge-fixed curves
approach the unfixed curve as
κ̃ → 0.
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