

Phases of QCD, topology and axions - II

MariaPaola Lombardo - INFN <u>lombardo@Inf.infn.it</u>

I Symmetries and phases of QCD in the Temperature, Nf space

II Results on the phase diagram

III Topology - broken phase

IV Topology - hot QCD & axions

II Results on the phase diagram

II.1 The magnetic EoS at finite temperature.

II.2 The conformal phase

II.3 The preconformal phase

II.1 Magnetic EoS in QCD at finite temperature

 $3d O(4) \text{ model} \qquad \beta \mathcal{H} = -J \sum_{\langle \vec{x}, \vec{y} \rangle} \vec{\phi}_{\vec{x}} \cdot \vec{\phi}_{\vec{y}} - \vec{H} \cdot \sum_{\vec{x}} \vec{\phi}_{\vec{x}}$

 $M = h^{1/\delta} f_G(z)$

$$z = \bar{t}/h^{1/\Delta}$$
 $\Delta \equiv eta \delta$

$$f_{G} = Mh^{-1/\delta}$$

$$f_{G} = Mh^{-1/\delta}$$

$$J > J_{c}$$

$$J < J_{c}$$

$$0.94$$

$$0.94$$

$$0.90$$

$$0.91$$

O(4) scaling analysis in two-flavor QCD at finite temperature and density with improved Wilson quarks

Umeda et al. 2017

 $M/h^{1/\delta} = f(t/h^{1/\beta\delta})$

Twisted mass at finite temperature collaboration, Nf=2

Hard to discriminate between different univ. classes

0.13 0.120.11 0.1 $\langle \bar{\psi}\psi
angle /h^{1/\delta}$ 0.09 0.08 0.07 0.06 0.050.042.53 3.54 4.50.51.52 1 z

narios

Chiral extrapolation for $T_{\chi}(m_{\pi})$ for various sce-

$$2^{nd} \text{ order } O(4) \xrightarrow{} m_{\pi}$$

$$m_{\pi,c} \xrightarrow{} 1^{st} \text{ order } Z(2)$$

Illustration of possible scenarios for the $N_f = 2$ chiral limit.

Phase boundary for the chiral transition in (2+1) -flavor QCD at small values of the chemical potential

O. Kaczmarek et al. 2011

The EoS extended at finite
$$\mu$$

$$\frac{T_c(\mu_q)}{T_c} = 1 - \kappa_q \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)$$

determines slope of the critical line

$$\frac{\chi_{m,q}}{T} = \frac{2\kappa_q T}{t_0 m_s} h^{-(1-\beta)/\beta\delta} f'_G(z)$$

Making the most of Taylor expansion and imaginary $~~\mu$

Same strategy may be used at imaginary μ

Laermann, Meyer, MpL 2013

within largish error, either O(2) and O(4)universality classes nicely describe the data and allow an estimate of the slope.

II.2 Establishing the conformal window

Similarities and differences between a conformal PT and a 2nd order one

Conformal scaling

Alho Evans Tuominen 2014

ل ل

 $m_{\pi,
ho} = A_{\pi,
ho} m^{\epsilon_{\pi,
ho}}$: mass ratios m-independent in the chiral limit

Degeneracy of the chiral partners towards the chiral limit

Ratios in the conformal window at a glance: the Edinburgh plot

Lattice corrections to conformal scaling

1: Size $M_H = L^{-1} f_H(x)$ $x \equiv L m^{1/y_m}$

2: Coupling $M_H = L^{-1} f_H \left(x, g_0 m^{\omega} \right)$

Del Debbio, Zwicky; Hasenfratz et al; MpL, da Silva, Miura, Pallante

$$LM_H = F_H(x) \left\{ 1 + g_0 m^\omega G_H(x) + \mathcal{O}\left(g_0^2 m^{2\omega}\right) \right\}$$

Compilation of results for the anomalous dimension, Nf=12

MpL, Miura, Nunes da Silva, Pallante 2014

BI-TP 2000/41

Standard picture of scale separation

Nfc

NIR

 $x = N_f / N_c$

$$\Lambda_{\rm IR}/\Lambda_{\rm UV} = \mathcal{O}(1).$$

 $\frac{\Lambda_{\rm UV}}{\Lambda_{\rm IR}} \sim \exp\left(\frac{\hat{K}}{\sqrt{x_c - x}}\right)$

In the conformal phase IR scales vanish but UV ones survive

The coupling walks for

 $\Lambda_{\rm UV}^{-1} \ll r \ll \Lambda_{\rm IR}^{-1}$

Standard picture of scale

Strongly interacting dynamics and the search for new physics at the LHC

T. Appelquist,¹ R. C. Brower,^{2,3} G. T. Fleming,^{1,3} A. Hasenfratz,^{4,3} X. Y. Jin,⁵ J. Kiskis,⁶ E. T. Neil,^{4,7,3} J. C. Osborn,^{5,3} C. Rebbi,² E. Rinaldi,^{8,3} D. Schaich,^{9,3,10} P. Vranas,⁸ E. Weinberg,¹¹ and O. Witzel^{12,3} (Lattice Strong Dynamics (LSD) Collaboration)

Beyond scale separation:

(Essential) singularity in the chiral limit and mass ratios: example from holographic V-QCD

Arean, latrakis, Jarvinen, Kiritsis 2013

Arean, latrakis, Jarvinen, Kiritsis 2013

 $\Lambda_{\rm IR}$ not unique:

Power-law corrections to essential singularity

Gies et al. 2013 Alho, Evans, Tuominen 2013

 $O_i = A_i (N_f^c - N_f)^{p_i} \langle \bar{q}q \rangle^{1/3}$

Power-law X Miranski scaling

May account for <u>hierarchy</u> of scales

Mass deformed theory I: EoS approach for IR quantities

 $\begin{array}{ll} y = f(x) \\ y = m/ < \bar{\psi}\psi >^{\delta} \end{array} \qquad \qquad \delta = \frac{6-\eta}{2-\eta} \end{array}$

Second order transition: $x = (N_f{}^c - N_f) / \langle \bar{\psi}\psi \rangle^{\frac{1}{\beta}} \qquad \langle \bar{\psi}\psi \rangle = (N_f{}^c - N_f)^{\beta}$

Essential singularity: Nogawa, Hasegawa, Nemoto, 2012 $x = e^{\sqrt{(N_f{}^c - N_f)}} / < \bar{\psi}\psi > \qquad < \bar{\psi}\psi > = e^{\sqrt{(N_f{}^c - N_f)}}$

Continuity of f(x) plus asymptotic forms for $m \to 0$ and $N_f \to N_f{}^c$ imply $\langle \bar{\psi}\psi \rangle \propto e^{\sqrt{(N_f{}^c-N_f)}}$ for m smallish and $(N_f{}^c-N_f)$ largish $\langle \bar{\psi}\psi \rangle \propto m^{1/\delta}$ for m largish and $(N_f{}^c-N_f)$ smallish Anomalous dimension appears naturally below Nfc Scaling limited by Goldstone singularities in the chiral limit (Wallace Zia Mass deformed theory II: KMI discussion

Mutatis mutandis, Eos approach reproduces KMI scenario:

Scaling with anomalous dimension

KMI 2013

Search for scale hierarchy -Kohtaroh Miura, MpL, Tiago Nunes da Silva, E Pallante

Towards a quantitive comparison with holography

K. Miura, MpL, E. Pallante, in progress

$$\frac{2\pi T_c}{M_{KK}} = 1 - \frac{1}{126\pi^3} \lambda_4^2 \frac{N_f}{N_c} \left(1 + \frac{12\pi^{3/2}}{\Gamma\left(-\frac{2}{3}\right)\Gamma\left(\frac{1}{6}\right)} \right)$$

Bigazzi and Cotrone, JHEP 2015

$$\left(1 + \frac{12\pi^{3/2}}{\Gamma\left(-\frac{2}{3}\right)\Gamma\left(\frac{1}{6}\right)}\right) \approx -1.987$$

T increases with Nf on the scales used in these two studies

Tc on the 1/w0 scale

K. Miura, MpL, E.Pallante, in progress

Moving the scale with Wilson flow

UV

Tc and the string tension

KM, MpL, EP, in progress

Mild decrease, possibly constant as $N_f \rightarrow N_f^c$

Again similar to the prediction of the WSS model:

$$\frac{T_c}{\sqrt{\sigma}} \propto (1 - \epsilon N_f / N_c)$$

communicated by F. Bigazzi

Hierarchy of scales in the near conformal phase

UV

Hierarchy of scales Λυν

Short detour on phenomenology

Beyond the Standard Model:

...as possible BSM candidates

Parting comments on the phase diagram

sQGP and strongly coupled conformal QCD are continuously connected

