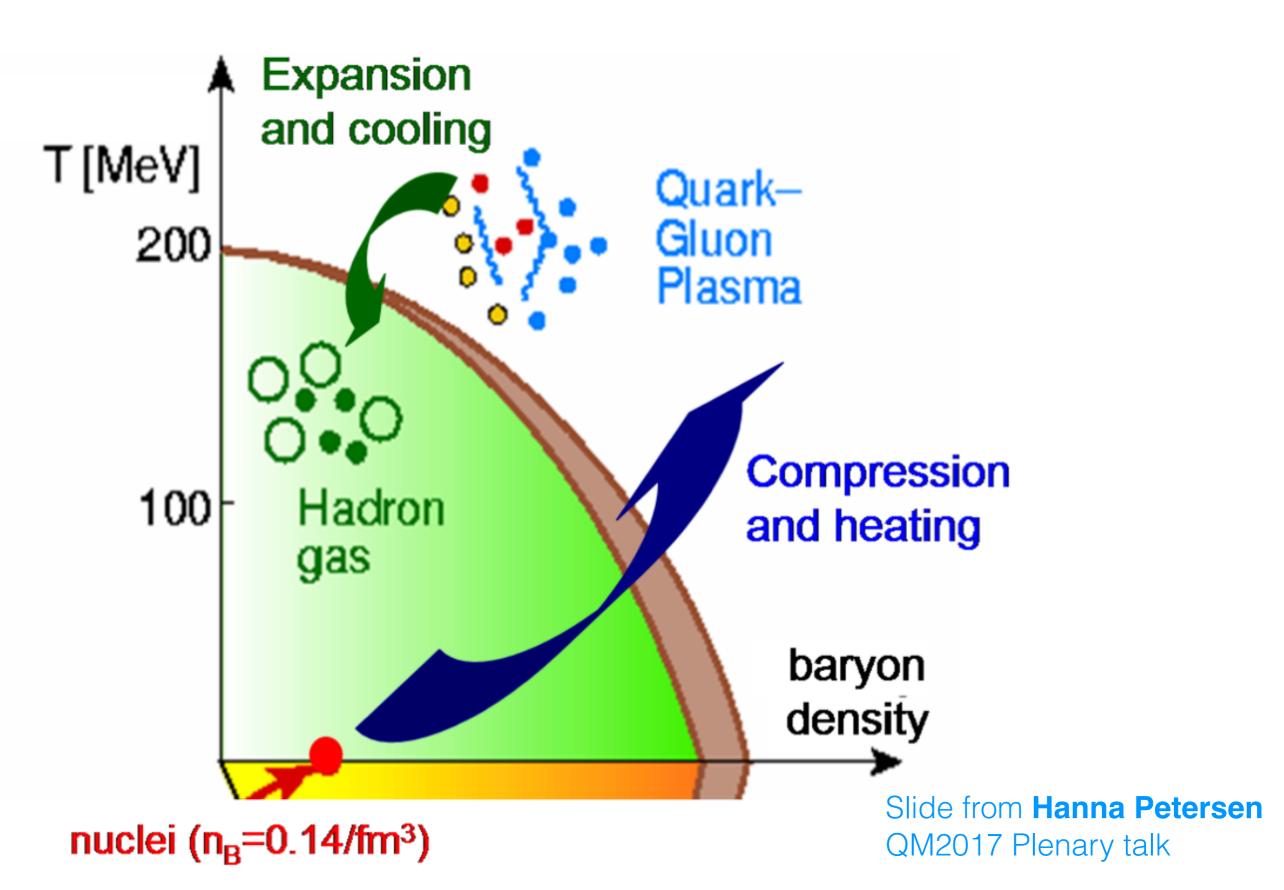
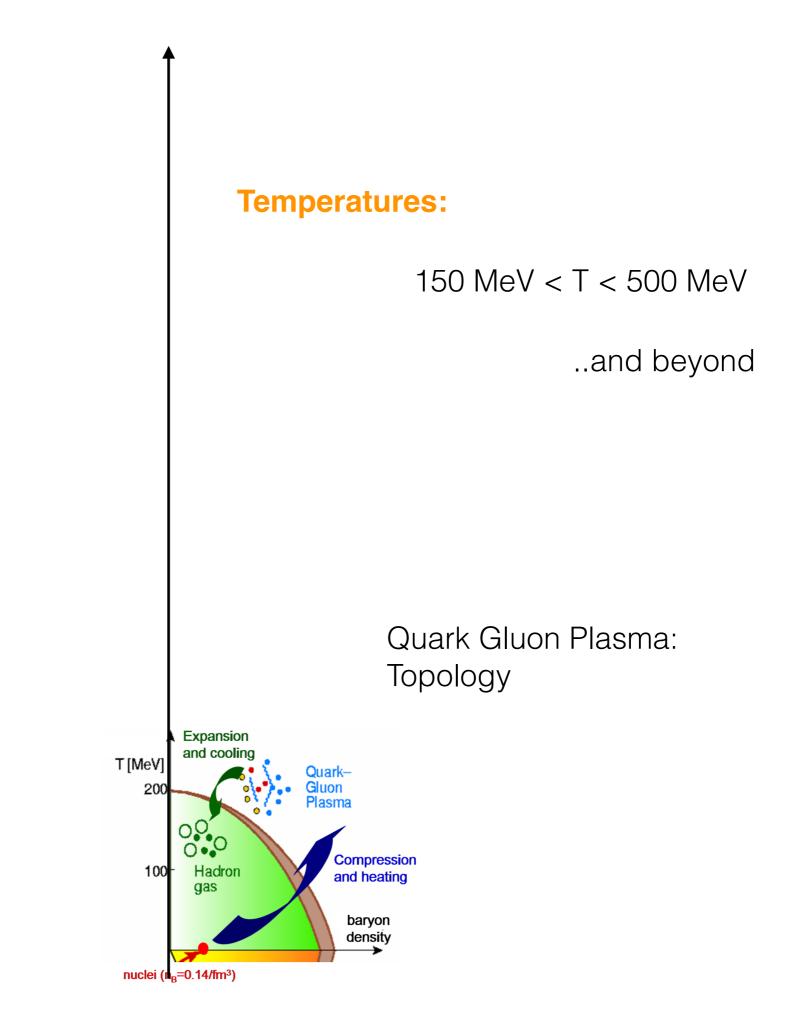
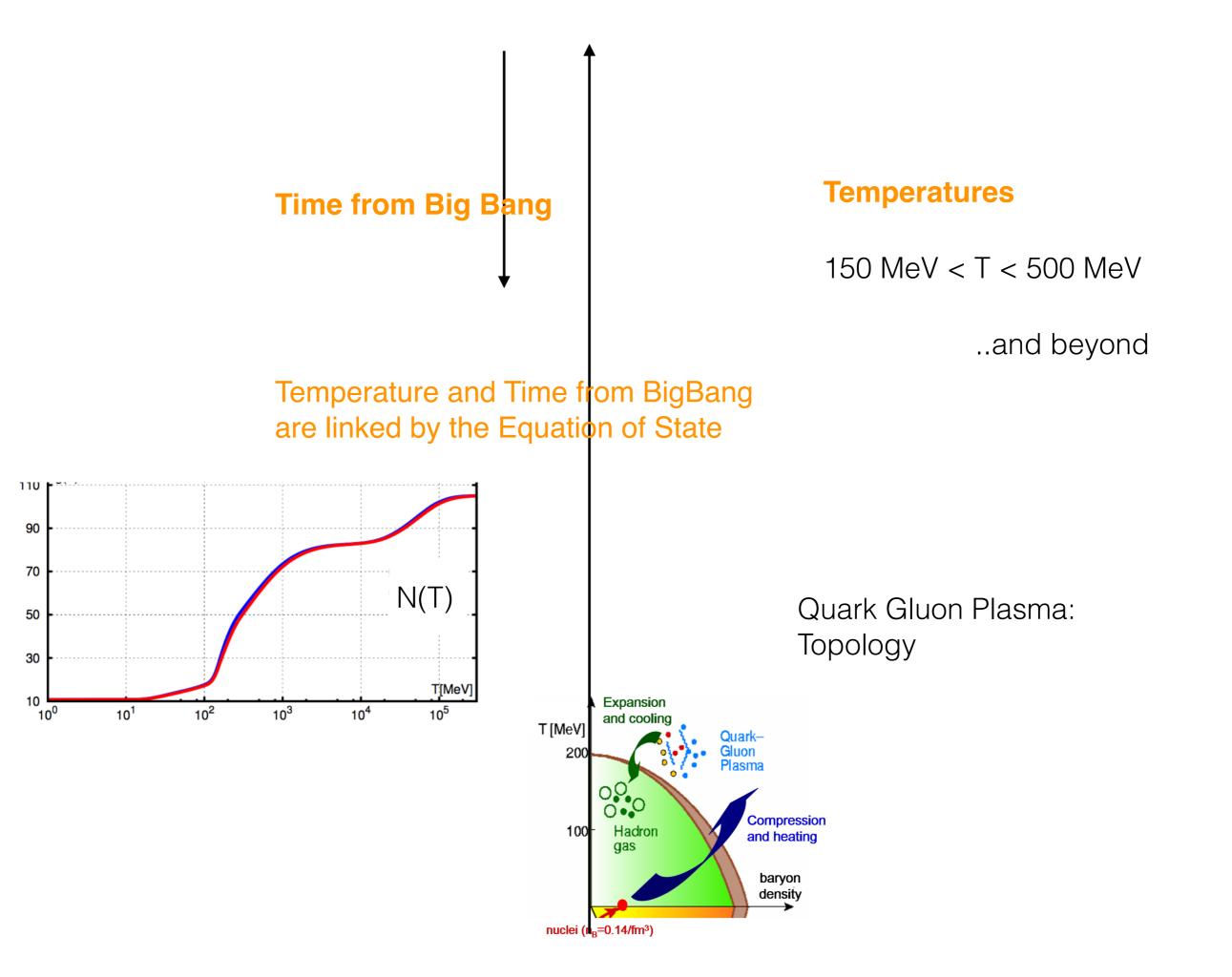
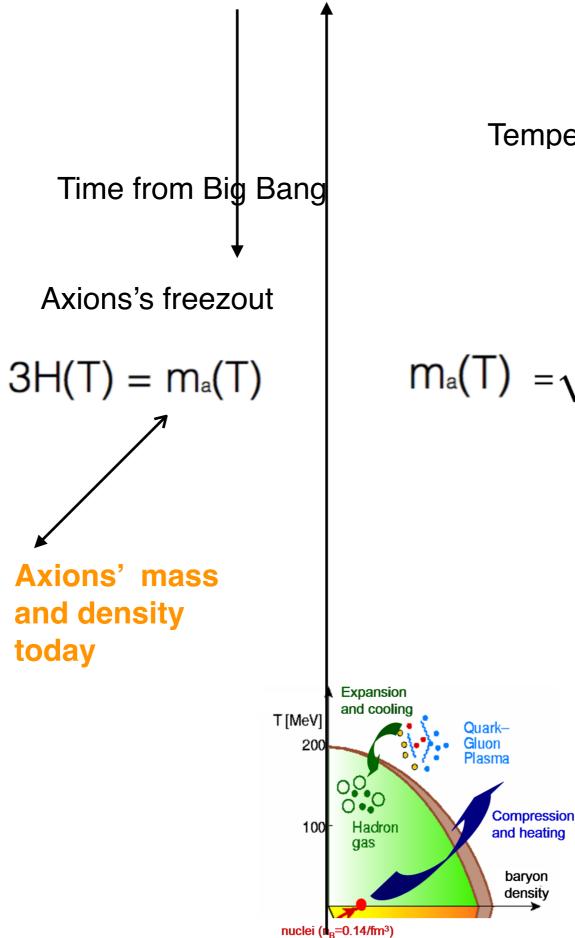


Phases of QCD, topology and axions - III


MariaPaola Lombardo - INFN <u>lombardo@Inf.infn.it</u>


I Symmetries and phases of QCD in the Temperature, Nf space


II Results on the phase diagram


III Topology - broken phase

IV Topology - hot QCD & axions

Temperature

Hubble parameter $H(T) \simeq T^2/M_P$

$$\mathsf{m}_{a}(\mathsf{T}) = \sqrt{\chi(T)}/f_{a}$$

baryon density ➛

Quark Gluon Plasma: Topology

Outline for today:

- -Topology: θ term, topological charge
- Resolution of the UA(1) puzzle, η' mass
- Why is topology challenging? Methods
- Topology at T=0 results
- Hot QCD topology : introduction

QCD topology, long standing focus of strong interaction:

-learning about the structure of the (s)QGP
 -fundamental symmetries, strongCP problem —> axions
 -hampered by technical difficulties

Recent developments:

-methodological progress: gradient flow, chiral fermions -first results for dynamical fermions at high temperature: Trunin *et al.* J.Phys.Conf.Ser. 668 (2016) no.1, 012123 Bonati *et al.* JHEP 1603 (2016) 155 Borsany *et al.* Nature 539 (2016) no.7627, 69-71 Petreczky *et al.* Phys.Lett. B762 (2016) 498-505 Burger *et al.* Nucl. Phys. A, in press Taniguchi *et al.* Phys.Rev. D95 (2017) no.5, 054502

$$\begin{aligned} \oint & \text{term and UA(1) problem} \\ \mathcal{L}_{QCD}(\theta) = \mathcal{L}_{QCD} + \underbrace{\frac{g^2 \theta}{32\pi^2} \epsilon^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma}.}_{\text{Ammitted but}} & \downarrow Q = \int d^4x \ \frac{g^2}{32\pi^2} \text{tr} F \tilde{F} \end{aligned}$$

$$Z_{QCD}(\theta, T) = \int [dA] [d\psi] [d\bar{\psi}] \exp\left(-T \sum_t d^3x \ \mathcal{L}_{QCD}(\theta)\right) = \exp[-VF(\theta, T)]$$

$$: \frac{\partial^2 F(\theta, T)}{\partial \theta^2} \Big|_{\theta=0} \equiv \chi(T) = (\langle Q^2 \rangle - \langle Q \rangle^2)/V$$

The θ dependence solves the $U_A(1)$ problem:

Approximate symmetry: $q
ightarrow e^{ilpha\gamma_5} q$

Would be broken by the (spontaneously generated) $\bar{q}q$

the candidate Goldstone is the η' Heavy!! (900 MeV)

BUT:

the divergence of the current

$$j^{\mu}_5 = ar q \gamma_5 \gamma_{\mu} q,$$

$$\partial_{\mu}j_{5}^{\mu} = m \bar{q} \gamma_{5} q + rac{1}{32\pi^{2}} F \tilde{F}.$$
Contains another term

The $U_A(1)$ symmetry is explicit broken

Particle name	Particle symbol [¢]	Antiparticle symbol	Quark content	Rest mass (MeV/c ²) \$
Pion ^[6]	π ⁺	π	ud	139.570 18 ±0.000 35
Pion ^[7]	π ⁰	Self	$rac{\mathrm{u} ar{\mathrm{u}} - \mathrm{d} ar{\mathrm{d}}}{\sqrt{2}}$ [a]	134.9766 ±0.0006
Eta meson ^[8]	η	Self	$rac{\mathrm{u} \bar{\mathrm{u}} + \mathrm{d} \bar{\mathrm{d}} - 2 \mathrm{s} \bar{\mathrm{s}}}{\sqrt{6}}$ [a]	547.862 ±0.018
Eta prime meson ^[9]	<mark>η'</mark> (958)	Self	$rac{\mathrm{u}ar{\mathrm{u}}+\mathrm{d}ar{\mathrm{d}}+\mathrm{s}ar{\mathrm{s}}}{\sqrt{3}}$ [a]	957.78 ±0.06
Kaon ^[12]	κ⁺	ĸ	us	493.677 ±0.016
Kaon ^[13]	K ⁰	ĸ	ds	497.614 ±0.024

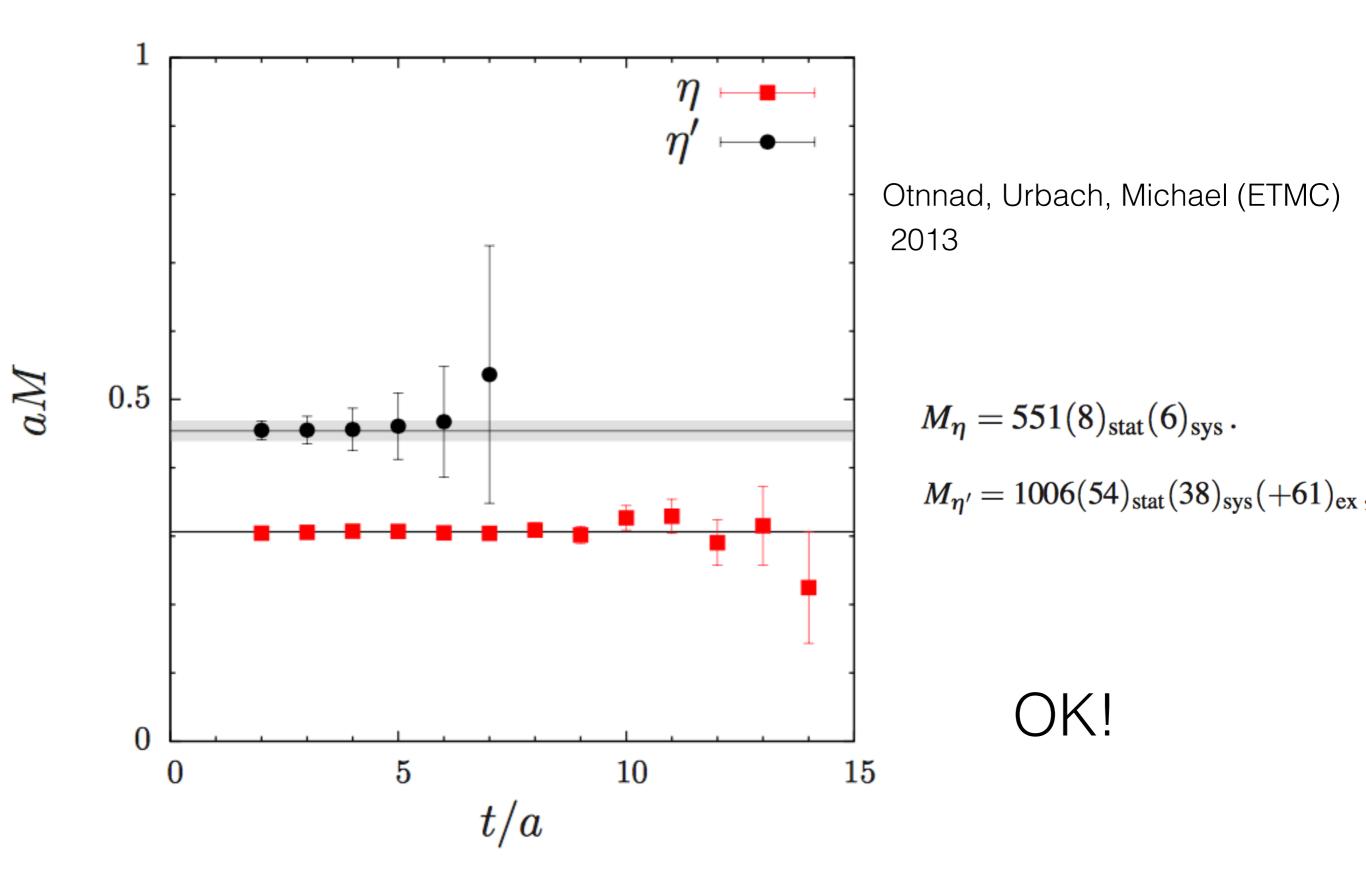
The heta dependence solves the $U_A(1)$ problem:provided that

 $\frac{1}{32\pi^2}\int d^4x F\tilde{F}$

is different from zero.

It can be proven that

$$\frac{1}{32\pi^2}\int d^4x F\tilde{F} = Q \qquad \text{(topological charge)}$$


and

$$Q = n_+ - n_-$$

.....provided that

$$\frac{1}{32\pi^2} \int d^4x F \tilde{F} \qquad \text{is different from zero.}$$

It can be proven that
and
$$\frac{1}{32\pi^2} \int d^4x F \tilde{F} = Q \qquad \text{Gluonic definition}$$
$$Q = n_+ - n_- \qquad \text{Fermionic definition}$$

The η' mass may now be computed from the decay of the correlation
 $\langle \partial_\mu j_5^\mu(x) \partial_\mu j_5^\mu(y) \rangle \propto \frac{1}{N^2} \langle F(x) \tilde{F}(x) F(y) \tilde{F}(y) \rangle$ which at leading order gives the Witten-Veneziano formula
$$m_{\eta'}^2 = \frac{2N_f}{F_\pi^2} \chi_t^{\text{qu}}$$

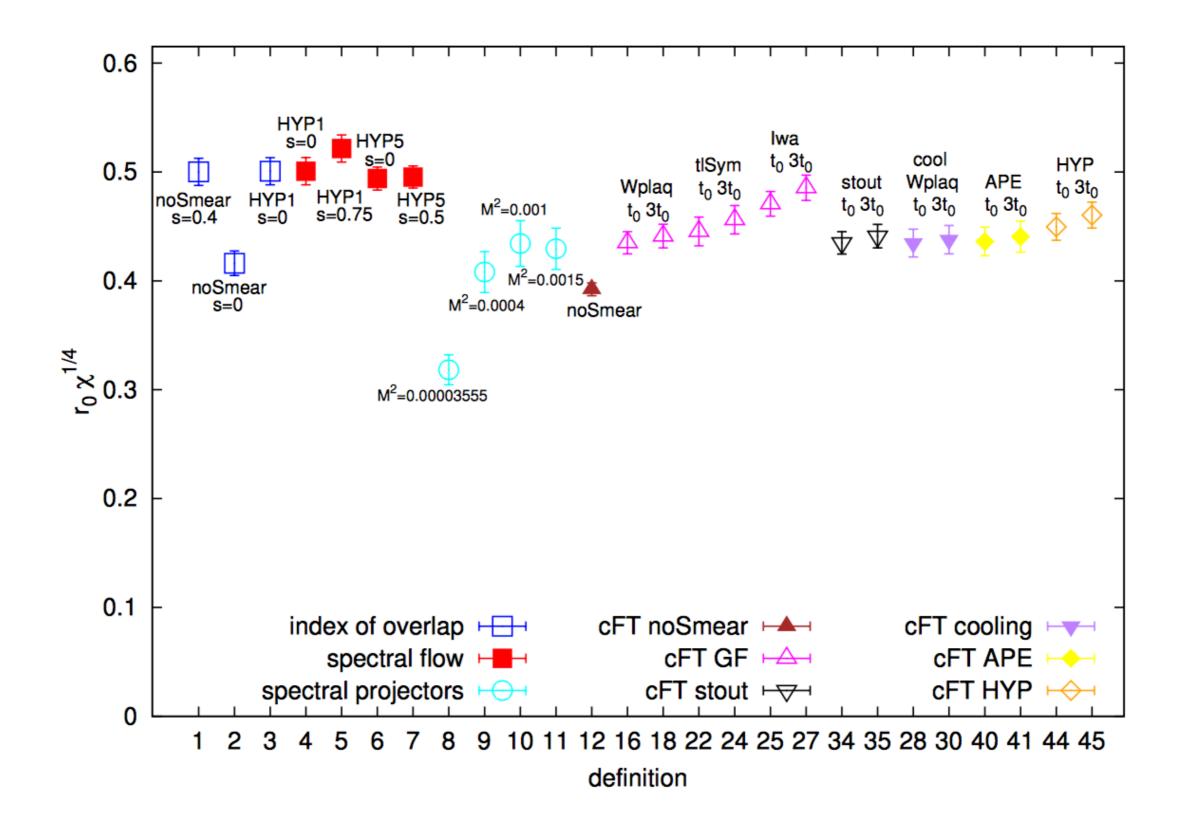
Contemporary studies of η, η'

A note on computation:

$$\mathcal{L}_{QCD}(\theta) = \mathcal{L}_{QCD} + \underbrace{\frac{g^2\theta}{32\pi^2}}_{\text{Ammitted but}} e^{\mu\nu\rho\sigma} F^a_{\mu\nu} F^a_{\rho\sigma}.$$

$$Q = \int d^4x \ \frac{g^2}{32\pi^2} \text{tr} F\tilde{F}$$
Sign problem

Approach similar in spirit to Taylor expansion for chempot


$$\begin{aligned} Z_{QCD}(\theta,T) &= \int [dA] [d\psi] [d\bar{\psi}] \exp\left(-T \sum_{t} d^{3}x \ \mathcal{L}_{QCD}(\theta)\right) = \exp[-VF(\theta,T)] \\ \text{Simulations at} \quad \theta &= 0 \quad \left. \frac{\partial^{2} F(\theta,T)}{\partial \theta^{2}} \right|_{\theta=0} \equiv \chi(T), = (\langle Q^{2} \rangle - \langle Q \rangle^{2})/V \end{aligned}$$

Comparison of topological charge definitions in Lattice QCD

Constantia Alexandrou^{*a,b*}, Andreas Athenodorou^{*b,a*}, Krzysztof Cichy^{*c,d*}, Arthur Dromard^{*e*}, Elena Garcia-Ramos^{*f,g*}, Karl Jansen^{*f*}, Urs Wenger^{*h*}, Falk Zimmermann^{*i*} 2017

Comparison of topological charge definitions

\mathbf{nr}	full name	smearing type	short name	type
1	index of overlap Dirac operator $s = 0.4$	—	index nonSmear $s = 0.4$	F
2	index of overlap Dirac operator $s = 0.0$	_	index nonSmear $s = 0$	\mathbf{F}
3	index of overlap Dirac operator $s = 0.0$	HYP1	index HYP1 $s = 0$	\mathbf{F}
4	Wilson-Dirac op. spectral flow $s = 0.0$	HYP1	SF HYP1 $s = 0.0$	\mathbf{F}
5	Wilson-Dirac op. spectral flow $s = 0.75$	HYP1	SF HYP1 $s = 0.75$	\mathbf{F}
6	Wilson-Dirac op. spectral flow $s = 0.0$	HYP5	${ m SF}~{ m HYP5}~s=0.0$	\mathbf{F}
7	Wilson-Dirac op. spectral flow $s = 0.5$	HYP5	${ m SF}~{ m HYP5}~s=0.5$	\mathbf{F}
8	spectral projectors $M^2 = 0.00003555$	—	spec. proj. $M^2 = 0.0000355$	\mathbf{F}
9	spectral projectors $M^2 = 0.0004$	_	spec. proj. $M^2 = 0.0004$	\mathbf{F}
10	spectral projectors $M^2 = 0.0010$	—	spec. proj. $M^2 = 0.0010$	\mathbf{F}
11	spectral projectors $M^2 = 0.0015$	_	spec. proj. $M^2 = 0.0015$	\mathbf{F}
12	field theoretic (clover)	_	cFT nonSmear	\mathbf{G}
	field theoretic (plaquette)	$GF(Wplaq,t_0)$	pFT GF Wplaq t_0	G
	field theoretic (plaquette)	GF (Wplaq, $2t_0$)	pFT GF Wplaq $2t_0$	G
	field theoretic (plaquette)	GF (Wplaq, $3t_0$)	pFT GF Wplaq $3t_0$	$\widetilde{\mathbf{G}}$
	field theoretic (clover)	GF (Wplaq, t_0)	cFT GF Wplaq t_0	$\widetilde{\mathbf{G}}$
	field theoretic (clover)	$GF (Wplaq, 2t_0)$	$cFT GF Wplaq 2t_0$	Ğ
	field theoretic (clover)	$GF (Wplaq, 3t_0)$	$cFT GF Wplaq 3t_0$	G
	field theoretic (improved)	$GF (Wplaq, t_0)$	iFT GF Wplaq t_0	G
	field theoretic (improved)	$GF (Wplaq, 2t_0)$ $GF (Wplaq, 2t_0)$	iFT GF Wplaq $2t_0$	G
	field theoretic (improved)	$GF (Wplaq, 2t_0)$ $GF (Wplaq, 3t_0)$	iFT GF Wplaq $3t_0$	G
	field theoretic (clover)		$cFT GF tlSym t_0$	G
		GF (tlSym, t_0) CF (tlSym, $2t_0$)		G
	field theoretic (clover)	GF (tlSym, $2t_0$)	$cFT GF tlSym 2t_0$	
	field theoretic (clover)	GF (tlSym, $3t_0$)	$cFT GF tlSym 3t_0$	G
	field theoretic (clover)	$GF(Iwa,t_0)$	$cFT GF Iwa t_0$	G
	field theoretic (clover)	GF (Iwa, $2t_0$)	$cFT GF Iwa 2t_0$	G
	field theoretic (clover)	$GF(Iwa, 3t_0)$	cFT GF Iwa $3t_0$	G
	field theoretic (clover)	$\operatorname{cool}\left(\operatorname{Wplaq}_{t_0}\right)$	$cFT cool (GF Wplaq t_0)$	G
	field theoretic (clover)	$\operatorname{cool}\left(\operatorname{Wplaq}_{3t_0}\right)$		G
	field theoretic (clover)	$\operatorname{cool}\left(\operatorname{tlSym}_{t_0}\right)$	cFT cool (GF tlSym t_0)	G
	field theoretic (clover)	$\operatorname{cool}\left(\operatorname{tlSym}_{3t_0}\right)$	$ m cFT \ cool \ (GF \ tlSym \ 3t_0)$	G
	field theoretic (clover)	$\operatorname{cool}\left(\operatorname{Iwa},t_{0} ight)$	$ m cFT\ cool\ (GF\ Iwa\ t_0)$	G
	field theoretic (clover)	$\operatorname{cool}\left(\operatorname{Iwa}, 3t_0\right)$	$ m cFT\ cool\ (GF\ Iwa\ 3t_0)$	\mathbf{G}
34	field theoretic (clover)	stout $(0.01, t_0)$	$ m cFT$ stout 0.01 (GF Wplaq t_0)	\mathbf{G}
35	field theoretic (clover)	stout $(0.01, 3t_0)$	cFT stout 0.01 (GF Wplaq $3t_0$)	\mathbf{G}
36	field theoretic (clover)	stout $(0.1,t_0)$	$ m cFT \ stout \ 0.1 \ (GF \ Wplaq \ t_0)$	\mathbf{G}
37	field theoretic (clover)	stout $(0.1, 3t_0)$	$cFT \text{ stout } 0.1 \text{ (GF Wplaq } 3t_0)$	\mathbf{G}
38	field theoretic (clover)	APE $(0.4, t_0)$	cFT APE 0.4 (GF Wplaq t_0)	\mathbf{G}
39	field theoretic (clover)	APE $(0.4, 3t_0)$	cFT APE 0.4 (GF Wplaq $3t_0$)	\mathbf{G}
40	field theoretic (clover)	APE $(0.5,t_0)$	cFT APE 0.5 (GF Wplaq t_0)	\mathbf{G}
41	field theoretic (clover)	APE $(0.5, 3t_0)$	cFT APE 0.5 (GF Wplaq $3t_0$)	\mathbf{G}
42	field theoretic (clover)	APE $(0.6, t_0)$	cFT APE 0.6 (GF Wplaq t_0)	G
43	field theoretic (clover)	APE $(0.6, 3t_0)$	cFT APE 0.6 (GF Wplaq $3t_0$)	\mathbf{G}
	field theoretic (clover)	HYP (t_0)	cFT HYP (GF Wplaq t_0)	\mathbf{G}
	field theoretic (clover)	HYP $(3t_0)$	$cFT HYP (GF Wplaq 3t_0)$	\mathbf{G}

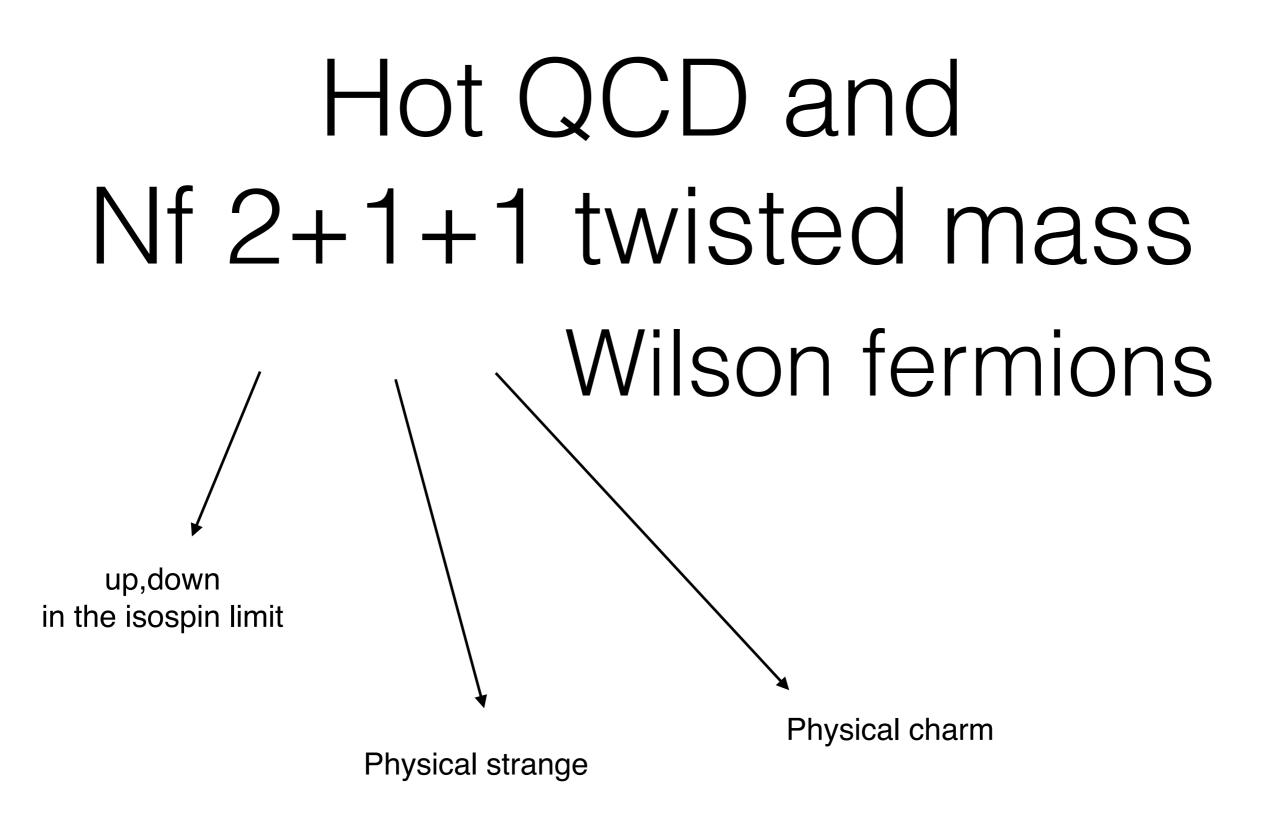
T=0 results satisfactory

(of course there is room for improvement)

From now on:

High Temperature

The two faces of Hot QCD topology



Window to Axions

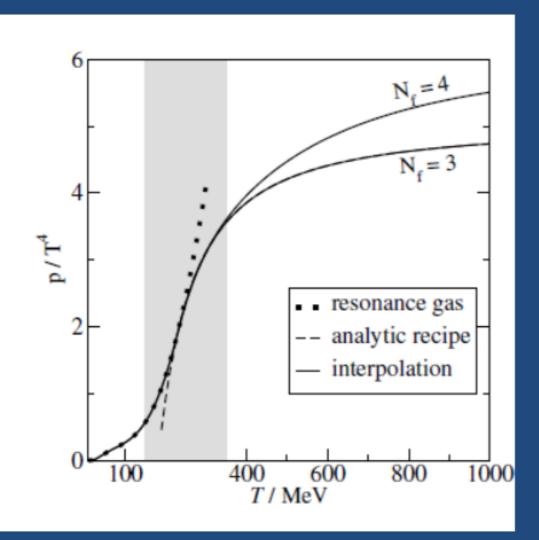
Property of Quark Gluon Plasma

Tomorrow

Our setup at a glance

Why Nf = 2 + 1 + 1? *Why Wilson twisted*?

QCD Symmetries, lattice and the real world


NB: Doubling

Good compromise

Why Nf = 2 +1 +1 ?

Quark Gluon Plasma @ Colliders

Analytic studies suggest that a dynamical charm becomes relevant above 400 MeV, well within the reach of LHC

Laine Schroeder 2006

Fixed varying scale	For each lattice spacing we explore a range of	Setup						
00010	temperatures	T = 0 (ETMC) nomenclature	β	$a \; [\mathrm{fm}] \; [6]$	N_{σ}^3	N_{τ}	$T [{ m MeV}]$	# confs.
	150MeV — 500					5	422(17)	585
	MeV by varying Nt	A60.24 1	1.90	0.0936(38)	24^3 32^3	6	351(14)	1370
	, , , , ,					7	301(12)	341
						8	263(11)	970
	We repeat this for					9	234(10)	577
	three different lattice spacings following ETMC T=0 simulations. Advantages: we					10 11	211(9)	$525 \\ 227$
						11	$192(8) \\ 176(7)$	1052
						12 13	162(7)	294
						14	151(6)	1988
		B55.32		0.0823(37)	32 ³	5	479(22)	595
			1.95			6	400(18)	345
						7	342(15)	327
						8	300(13)	233
Four pion						9	266(12)	453
masses	rely on the setup of					10 11	240(11) 218(10)	295 667
masses	ETMC T=0					11	218(10) 200(9)	1102
						12 13	184(8)	308
	simulations. Scale is					14	171(8)	1304
Number of $m_{\pi^{\pm}}$	set once for all.					15	160(7)	456
flavours $m_{\pi^{\pm}}$						16	150(7)	823
210	Disadvantages:	D45.32		0.0646(26)	32^{3}	6	509(20)	403
$N_f = 2 + 1 + 1 + \frac{260}{270}$			2.10			7	436(18)	412
- 370	mismatch of					8	382(15) 205(12)	416
470						$\begin{array}{c} 10\\ 12 \end{array}$	305(12) 255(10)	$\begin{array}{c c} 420\\ 380 \end{array}$
$N_{2} = 2$ 360	temperatures - need interpolation before					12 14	255(10) 218(9)	793
$N_f = 2 \qquad \qquad \begin{array}{c} 300\\ 430 \end{array}$						16	191(8)	626
					40^{3}	18	170(7)	599
	taking the				48^{3}	20	153(6)	582
	continuum limit			·				