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Strongly interacting matter: QCD

hadronic and quark-gluon plasma: rich topic

spectral quantities

close to equilibrium

out of equilibrium
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(de)confinement: light hadron spectrum (π, ρ,N, ...)
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T > Tc: transition to quark degrees of freedom
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Strongly interacting matter: QCD

spectral quantities

(de)confinement: light hadron spectrum (π, ρ,N, ...)

in-medium modification as T ∼ 0 → Tc
T > Tc: transition to quark degrees of freedom

chiral symmetry

T → Tc: emergent degeneracy (ρ↔ a1, N ↔ N∗, ...)

heavy quarks/quarkonium

survival in QGP, channel dependent (c̄c, b̄b)

sequential melting, effective thermometer

. . .
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Strongly interacting matter: QCD

spectral quantities

close to equilibrium

linear response, external perturbations

plasma oscillations, correlation times
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Strongly interacting matter: QCD

spectral quantities

close to equilibrium

linear response, external perturbations

plasma oscillations, correlation times

transport: evolution of nearly conserved quantities

energy-momentum: viscosities η, ξ

charges: conductivity σ, light/heavy quark diffusion D
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Strongly interacting matter: QCD

spectral quantities

close to equilibrium

linear response, external perturbations

plasma oscillations, correlation times

transport: evolution of nearly conserved quantities

energy-momentum: viscosities η, ξ

charges: conductivity σ, light/heavy quark diffusion D

non-strongly interacting signatures

thermal radiation: photon emission rate

dilepton production rate

. . .
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Strongly interacting matter: QCD

spectral quantities

close to equilibrium

out of equilibrium

“arbitrary” initial state: evolution in real time

heavy ion collision

. . .
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Strongly interacting matter: QCD

spectral quantities

close to equilibrium

out of equilibrium

“arbitrary” initial state: evolution in real time

heavy ion collision

. . .

requires use of effective (field) theories

hydrodynamics – kinetic theory, (classical) particle
dynamics – classical field dynamics, . . .
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Strongly interacting matter: QCD

spectral quantities

close to equilibrium

out of equilibrium

“arbitrary” initial state: evolution in real time

heavy ion collision

. . .

requires use of effective (field) theories

hydrodynamics – kinetic theory, (classical) particle
dynamics – classical field dynamics, . . .

relation

transport coefficients as low-energy constants

spectral understanding, (quasi)particles
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Strongly interacting matter: QCD

spectral quantities

close to equilibrium

out of equilibrium (not discussed further, except as above)

addresses seemingly very different questions:

yet information is contained in thermal correlators

all thermal correlation functions contain all the information
(Euclidean, Feynman, Wightman, retarded, advanced, statistical, . . .)

Dubna, August 2017 – p. 6



Strongly interacting matter: QCD

spectral quantities

close to equilibrium

out of equilibrium (not discussed further, except as above)

addresses seemingly very different questions:

yet information is contained in thermal correlators

all thermal correlation functions contain all the information
(Euclidean, Feynman, Wightman, retarded, advanced, statistical, . . .)

but info might be more accessible in specific form

or easier defined in certain representations

⇒ spectral function ρ(ω,p)
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Spectral functions

spectral quantities at low temperatures
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Spectral functions

spectral quantities at low temperatures

spectral quantities at higher temperatures

thermal broadening, dissociation, quarkonium
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Spectral functions

spectral quantities at low temperatures

spectral quantities at higher temperatures

transport at small frequencies
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Spectral functions

spectral quantities at low temperatures

spectral quantities at higher temperatures

transport at small frequencies

photon/dilepton production in kinematic range
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Spectral functions

spectral quantities at low temperatures

spectral quantities at higher temperatures

transport at small frequencies

photon/dilepton production in kinematic range

lots of diverse information in various regimes

Dubna, August 2017 – p. 7



Outline

plethora of Green functions

start with basic thermal field theory discussion

free scalar field

express Green functions in terms of spectral function

extend nonperturbatively using KMS condition

relate euclidean and spectral functions

make connection with lattice QCD

Le Bellac Thermal Field Theory Cambridge University Press

Laine & Vuorinen Basics of Thermal Field Theory arXiv:1701.01554
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Green functions in thermal equilibrium

many Green functions, special role for spectral function

let’s start with free fields

consider one mode of free scalar bosonic field φ(x)

φk(t) =
1√
2ωk

(

ake
−iωkt + a†

k
eiωkt

)

ωk =
√

k2 +m2

with [φk(t), πk′(t)] = iδkk′ [ak, a
†
k′ ] = δkk′

statistics 〈a†
k
ak′〉 = nB(ωk)δkk′

Bose distribution nB(ω) = 1/(eω/T − 1)

all expectations values are ∝ δkk′: consider only one mode
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Green functions in thermal equilibrium

Wightman functions (not time-ordered)

G>
k
(t− t′) = 〈φk(t)φk(t′)〉 G<

k
(t− t′) = 〈φk(t′)φk(t)〉

insert field expansion

G>
k
(t− t′) =

1

2ωk

(

e−iωk(t−t′) + 2nB(ωk) cos[ωk(t− t′)]
)

= G<
k
(t′ − t)

Feynman propagator (time-ordered)

GF
k
(t− t′) = θ(t− t′)G>

k
(t− t′) + θ(t′ − t)G<

k
(t− t′)

consider real and imaginary components
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Green functions in thermal equilibrium

real part, anticommutator, statistical two-point function

Fk(t− t′) =
1

2

[

G>
k
(t− t′) +G<

k
(t− t′)

]

=
1

2

〈

{φk(t), φk(t′)}
〉

=
1

2ωk
[1 + 2nB(ωk)] cos[ωk(t− t′)]

imaginary part, commutator, spectral function

ρk(t− t′) = G>
k
(t− t′)−G<

k
(t− t′) =

〈

[φk(t), φk(t
′)]
〉

=
1

iωk
sin[ωk(t− t′)]

note:

ρ does not know about thermal occupation numbers

∂
∂t
ρk(t− t′)

∣

∣

t=t′
= −i = 〈[πk(t), φk(t)]〉 commutation relation
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Green functions in thermal equilibrium

retarded and advanced Green functions

GR
k
(t− t′) = iθ(t− t′)

〈

[φk(t), φk(t
′)]
〉

= iθ(t− t′)ρk(t− t′) = GA
k
(t′ − t)

causality:

GR
k
(t−t′) = 0 when t < t′ GA

k
(t−t′) = 0 when t > t′

go to frequency space:

f(ω) =

∫ ∞

−∞

dt eiωtf(t) f(t) =

∫ ∞

−∞

dω

2π
e−iωtf(ω)
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Green functions in thermal equilibrium

spectral function

in real-time ρk(t− t′) = −i sin[ωk(t− t′)]/ωk

ρk(ω) =
2π

2ωk
[δ(ω − ωk)− δ(ω + ωk)] = 2πǫ(ω)δ

(

ω2 − ω2
k

)

single-particle peak at ω = ±ωk
odd function: ǫ(ω) ≡ θ(ω)− θ(−ω) ρk(−ω) = −ρk(ω)

sum rule
∫ ∞

−∞

dω

2π
ωρk(ω) =

∫ ∞

−∞

dω

2π

2πω

2ωk
[δ(ω − ωk)− δ(ω + ωk)] = 1

consequence of commutation relation ∂
∂t
ρk(t− t′)

∣

∣

t=t′
= −i

Dubna, August 2017 – p. 13



Green functions in thermal equilibrium

Wightman/statistical two-point functions in frequency-space

all proportional to spectral function

G>
k
(ω) = [nB(ω) + 1] ρk(ω)

G<
k
(ω) = nB(ω)ρk(ω)

F>
k
(ω) =

[

nB(ω) +
1

2

]

ρk(ω)

with statistical factors, such that e.g.

ρ = G> −G< F =
1

2

(

G> +G<
)
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Green functions in thermal equilibrium

retarded/advanced Green functions: causality

analytical in upper/lower half place

G
R/A
k

(ω) =
1

ω2
k
− (ω ± iǫ)2

retarded: poles at ω = ±ωk − iǫ, below real axis

GA
k
(ω) = GR

k

∗
(ω) = GR

k
(−ω)

relate to spectral function via dispersion relation

GR
k
(ω) =

∫ ∞

−∞

dω′

2π

ρk(ω
′)

ω′ − ω − iǫ

verify using
∫ ∞

−∞

dω

2π

e−iωt

ω + iǫ
= −iθ(t)
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Green functions in thermal equilibrium

combine dispersion relation GR
k
(ω) =

∫ ∞

−∞

dω′

2π

ρk(ω
′)

ω′ − ω − iǫ

with identity 1

x+ iǫ
= P 1

x
− iπδ(x)

or
1

x+ iǫ
− 1

x− iǫ
=

−2iǫ

x2 + ǫ2
= −2iπδ(x)

this yields

ρk(ω) = −i
[

GR
k
(ω)−GA

k
(ω)

]

= 2ImGR
k
(ω)

spectral density is

imaginary part of retarded Green function

discontinuity across the real axis
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Green functions in thermal equilibrium

in summary:

in thermal equilibrium, all Green functions can be
expressed in terms of the corresponding spectral function,

combined with thermal occupation numbers

so far this was demonstrated for free fields

but also correct nonperturbatively, due to
Kubo-Martin-Schwinger (KMS) condition

Dubna, August 2017 – p. 17



KMS condition

consider two Wightman functions for operators A(t), B(t)

G>(t1 − t2) = 〈A(t1)B(t2)〉 G<(t1 − t2) = 〈B(t2)A(t1)〉

thermal expectation value: 〈O〉 = 1

Z
Tr e−βHO Z = Tr e−βH

time evolution: A(t) = eiHtA(0)e−iHt

note: in equilibrium ⇒ time translation invariance t1− t2

cyclicity of the trace

G>(t1 − t2) =
1

Z
Tr e−βHeiHt1A(0)e−iHt1eiHt2B(0)e−iHt2

=
1

Z
Tr e−βHeβHeiHt2B(0)e−iHt2e−βHeiHt1A(0)e−iHt1

=
1

Z
Tr e−βHB(t2 − iβ)A(t1) = G<(t1 − t2 + iβ)
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KMS condition

identity G>(t1 − t2) = G<(t1 − t2 + iβ)

crucial: same hamiltonian for time evolution eiHt and
density matrix e−βH

hence only holds in thermal equilibrium

since H includes interactions, holds nonperturbatively

in frequency space G>(ω) = eβωG<(ω)

relate all other Green functions

spectral function ρ(ω) = G>(ω)−G<(ω) = (eβω − 1)G<(ω)

hence G>(ω) = [nB(ω) + 1] ρ(ω) G<(ω) = nB(ω)ρ(ω)

Bose distribution emerges exactly

all interesting physics is hidden in spectral function
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Fermions

few changes due to anticommuting fields

Wightman functions

S>(t1−t2) =
〈

ψ(t1)ψ̄(t2)
〉

S<(t1−t2) = −
〈

ψ̄(t2)ψ(t1)
〉

KMS condition

S>(t1−t2) = −S<(t1−t2+iβ) S>(ω) = −eβωS<(ω)

spectral function, anticommutator

ρ(t1 − t2) =
〈

{ψ(t1), ψ̄(t2)}
〉

= S>(t1 − t2)− S<(t1 − t2)

Fermi distribution nF (ω) = 1/(eω/T + 1) emerges

S>(ω) = [1− nF (ω)] ρ(ω) S<(ω) = −nF (ω)ρ(ω)
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Fermions vs bosons

bosons

G>(ω) = [1 + nB(ω)] ρ(ω) G<(ω) = nB(ω)ρ(ω)

Bose enhancement 1 → 1 + nB

fermions

S>(ω) = [1− nF (ω)] ρ(ω) S<(ω) = −nF (ω)ρ(ω)

Pauli blocking 1 → 1− nF

general rule: from bosons to fermions nB → −nF

connection with lattice QCD: euclidean time
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Euclidean correlators

interpret e−βH as evolution operator

euclidean time τ = it: 0 < τ < β = 1/T

correlator GE
k
(τ) = 〈φk(τ)φk(0)〉

GE
k
(τ) = T

∑

n

e−iωnτGE
k
(ωn) GE

k
(ωn) =

∫ 1/T

0

dτ eiωnτGE
k
(τ)

(anti)periodic boundary conditions for bosons (fermions)

Matsubara frequencies ωn = 2πnT [(2n+ 1)πT ]

free correlator for scalar field

GE
k
(τ) =

cosh[ωk(τ − 1/2T )]

2ωk sinh(ωk/2T )
GE

k
(ωn) =

1

ω2
n + ω2

k
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Euclidean correlators

dispersion relation and analytical continuation

GE
k
(ωn) =

1

ω2
n + ω2

k

GR
k
(ω) =

1

−(ω + iǫ)2 + ω2
k

relation between euclidean and retarded Green
functions

GR
k
(ω) = GE

k
(iωn → w + iǫ)

general dispersion relation

GE
k
(ωn) =

∫ ∞

−∞

dω

2π

ρk(ω)

ω − iωn

all functions related by analyticity and KMS conditions
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Thermal QCD

all functions related by analyticity and KMS conditions

QCD: strongly interacting system

do not rely on perturbation theory

lattice simulations

yield numerically determined euclidean correlators

make relation with spectral functions more explicit

Dubna, August 2017 – p. 24



Lattice correlators and spectral functions

spectral relation between GE
k
(τ) and ρk(ω)

GE
k
(ωn) =

∫ ∞

−∞

dω

2π

ρk(ω)

ω − iωn

go to euclidean time

GE
k
(τ) = T

∑

n

e−iωnτ

∫ ∞

−∞

dω

2π

ρk(ω)

ω − iωn

=

∫ ∞

−∞

dω

2π
K(τ, ω)ρk(ω)

with kernel

K(τ, ω) = T
∑

n

e−iωnτ

ω − iωn
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Lattice correlators and spectral functions

spectral relation GE
k
(τ) =

∫

dω
2π K(τ, ω)ρk(ω)

kernel

K(τ, ω) = T
∑

n

e−iωnτ

ω − iωn
=

{

e−ωτ [1 + nB(ω)] bosons

e−ωτ [1− nF (ω)] fermions

bosons:
ρk(−ω) = −ρk(ω) odd ⇒ odd part of kernel survives

KB(τ, ω) = . . . =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )

note: 1+nB(ω) =
eω/2T

2 sinh(ω/2T )
nB(ω)+nB(−ω)+1 = 0

fermions: slightly more involved, see later
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Lattice correlators and spectral functions

spectral relation GE(τ) =
∫

dω
2π K(τ, ω)ρ(ω)

if GE(ωn) is known analytically: simple route

GE(τ) → GE(ωn) → GR(ω) → ρ(ω)

but correlators only known numerically (i.e. with errors)
at finite number of points

lattice discretisation: 0 < τ < 1/T with 1/T = aτNτ

⇒ at most Nτ points

for bosons: kernel symmetric K(τ, ω) = K(1/T − τ, ω)
⇒ at most Nτ/2 points

ρ(ω) in principle continuous (and possibly
nonanalytical) function with −∞ < ω <∞
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Lattice correlators and spectral functions

spectral relation GE
k
(τ) =

∫

dω
2π K(τ, ω)ρk(ω)

ill-posed problem: direct inversion not defined

extract continuous function ρk(ω) from finite O(Nτ )
number of numerically determined data points

longstanding problem across science:
image reconstruction

provide some additional input to regulate the inversion:

Bayesian methods

Maximum Entropy Method (MEM)

Bayesian Reconstruction (BR)

Backus-Gilbert

Ansätze

. . .

possibly see other talks (Rothkopf, Francis, Kaczmarek)
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Thermal spectral functions

next time: what to expect?

already encountered single-particle spectral function

ρk(ω) = 2πǫ(ω)δ
(

ω2 − ω2
k

)

single-particle peak at ω = ±ωk
relevant for QCD at T = 0: spectrum of hadrons

increase the temperature:

in-medium effects

thermal broadening

deconfinement

symmetry restoration

transport

. . .

discuss this for mesons and baryons
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