Spectral quantities in thermal QCD

I: introduction

Gert Aarts

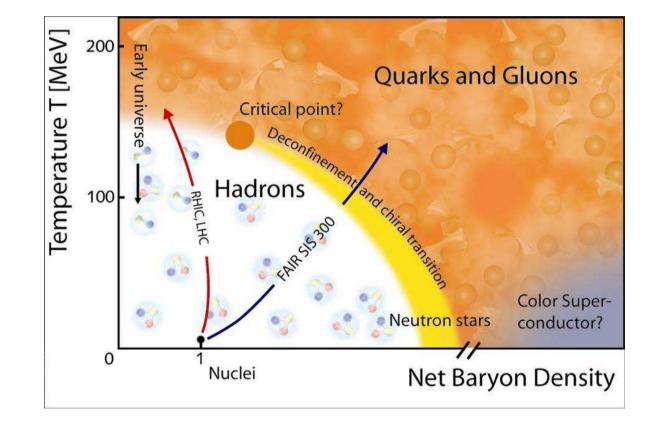
Swansea University Prifysgol Abertawe

hadronic and quark-gluon plasma: rich topic

spectral quantities

close to equilibrium

out of equilibrium



spectral quantities

- (de)confinement: light hadron spectrum (π , ρ , N, ...)
 - in-medium modification as $T \sim 0 \rightarrow T_c$
 - $T > T_c$: transition to quark degrees of freedom

spectral quantities

- (de)confinement: light hadron spectrum (π , ρ , N, ...)
 - in-medium modification as $T \sim 0 \rightarrow T_c$
 - $T > T_c$: transition to quark degrees of freedom
- chiral symmetry
 - $T \to T_c$: emergent degeneracy $(\rho \leftrightarrow a_1, N \leftrightarrow N^*, ...)$

spectral quantities

- (de)confinement: light hadron spectrum (π , ρ , N, ...)
 - in-medium modification as $T \sim 0 \rightarrow T_c$
 - $T > T_c$: transition to quark degrees of freedom
- chiral symmetry

- $T \to T_c$: emergent degeneracy $(\rho \leftrightarrow a_1, N \leftrightarrow N^*, ...)$
- heavy quarks/quarkonium
 - survival in QGP, channel dependent ($\bar{c}c, \bar{b}b$)
 - sequential melting, effective thermometer

spectral quantities

close to equilibrium

- Inear response, external perturbations
 - plasma oscillations, correlation times

spectral quantities

close to equilibrium

- Inear response, external perturbations
 - plasma oscillations, correlation times
- transport: evolution of nearly conserved quantities
 - energy-momentum: viscosities η, ξ
 - charges: conductivity σ , light/heavy quark diffusion D

spectral quantities

close to equilibrium

_

- Inear response, external perturbations
 - plasma oscillations, correlation times
- transport: evolution of nearly conserved quantities
 - energy-momentum: viscosities η, ξ
 - charges: conductivity σ , light/heavy quark diffusion D
- non-strongly interacting signatures
 - thermal radiation: photon emission rate
 - dilepton production rate

spectral quantities

close to equilibrium

out of equilibrium

- "arbitrary" initial state: evolution in real time
 - heavy ion collision
 - **9** ...

spectral quantities

close to equilibrium

out of equilibrium

- "arbitrary" initial state: evolution in real time
 - heavy ion collision
 - **9** ...

requires use of effective (field) theories

hydrodynamics – kinetic theory, (classical) particle dynamics – classical field dynamics, ...

spectral quantities

close to equilibrium

out of equilibrium

- "arbitrary" initial state: evolution in real time
 - heavy ion collision
 - **9** ...

requires use of effective (field) theories

hydrodynamics – kinetic theory, (classical) particle dynamics – classical field dynamics, ...

relation

- transport coefficients as low-energy constants
- spectral understanding, (quasi)particles

spectral quantities

close to equilibrium

out of equilibrium (not discussed further, except as above)

addresses seemingly very different questions:

yet information is contained in thermal correlators

all thermal correlation functions contain *all* the information (Euclidean, Feynman, Wightman, retarded, advanced, statistical, ...)

spectral quantities

close to equilibrium

out of equilibrium (not discussed further, except as above)

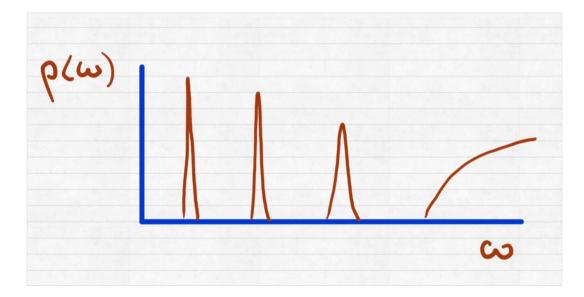
addresses seemingly very different questions:

yet information is contained in thermal correlators

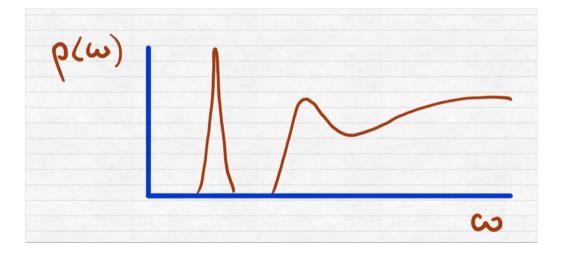
all thermal correlation functions contain *all* the information (Euclidean, Feynman, Wightman, retarded, advanced, statistical, ...)

- but info might be more accessible in specific form
- or easier defined in certain representations
- \Rightarrow spectral function $\rho(\omega, \mathbf{p})$

spectral quantities at low temperatures

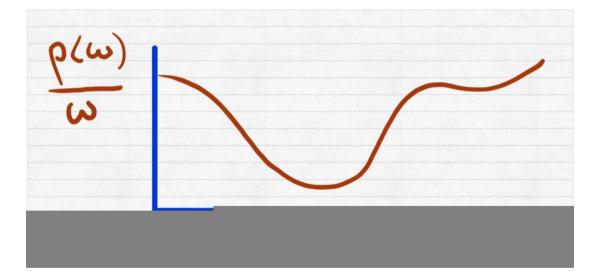


- spectral quantities at low temperatures
- spectral quantities at higher temperatures

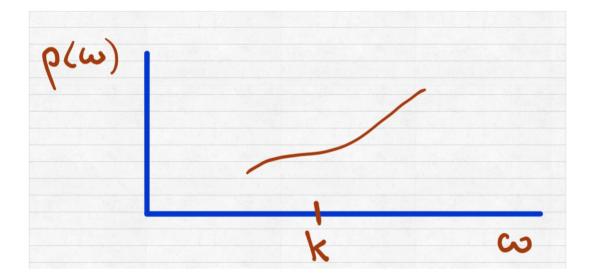


thermal broadening, dissociation, quarkonium

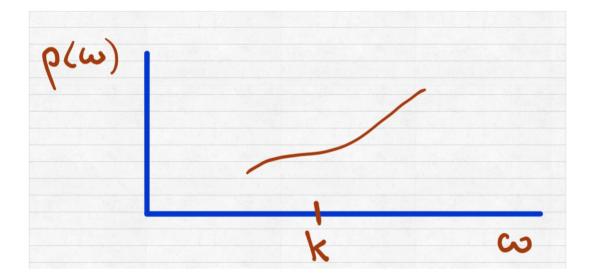
- spectral quantities at low temperatures
- spectral quantities at higher temperatures
- transport at small frequencies



- spectral quantities at low temperatures
- spectral quantities at higher temperatures
- transport at small frequencies
- photon/dilepton production in kinematic range



- spectral quantities at low temperatures
- spectral quantities at higher temperatures
- transport at small frequencies
- photon/dilepton production in kinematic range



Iots of diverse information in various regimes

Outline

plethora of Green functions

start with basic thermal field theory discussion

- free scalar field
- express Green functions in terms of spectral function
- extend nonperturbatively using KMS condition
- relate euclidean and spectral functions

make connection with lattice QCD

Le Bellac Thermal Field Theory Cambridge University Press Laine & Vuorinen Basics of Thermal Field Theory arXiv:1701.01554

many Green functions, special role for spectral function let's start with free fields

 \checkmark consider one mode of free scalar bosonic field $\phi(x)$

$$\phi_{\mathbf{k}}(t) = \frac{1}{\sqrt{2\omega_{\mathbf{k}}}} \left(a_{\mathbf{k}} e^{-i\omega_{\mathbf{k}}t} + a_{\mathbf{k}}^{\dagger} e^{i\omega_{\mathbf{k}}t} \right) \qquad \omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$$

with $[\phi_{\mathbf{k}}(t), \pi_{\mathbf{k}'}(t)] = i\delta_{\mathbf{k}\mathbf{k}'}$ $[a_{\mathbf{k}}, a_{\mathbf{k}'}^{\dagger}] = \delta_{\mathbf{k}\mathbf{k}'}$

- statistics $\langle a_{\mathbf{k}}^{\dagger}a_{\mathbf{k}'}\rangle = n_B(\omega_{\mathbf{k}})\delta_{\mathbf{k}\mathbf{k}'}$
- **•** Bose distribution $n_B(\omega) = 1/(e^{\omega/T} 1)$

all expectations values are $\propto \delta_{\mathbf{k}\mathbf{k}'}$: consider only one mode

Wightman functions (not time-ordered)

 $G_{\mathbf{k}}^{>}(t-t') = \langle \phi_{\mathbf{k}}(t)\phi_{\mathbf{k}}(t')\rangle \qquad \qquad G_{\mathbf{k}}^{<}(t-t') = \langle \phi_{\mathbf{k}}(t')\phi_{\mathbf{k}}(t)\rangle$

insert field expansion

$$G_{\mathbf{k}}^{>}(t-t') = \frac{1}{2\omega_{\mathbf{k}}} \left(e^{-i\omega_{\mathbf{k}}(t-t')} + 2n_{B}(\omega_{\mathbf{k}}) \cos[\omega_{\mathbf{k}}(t-t')] \right)$$
$$= G_{\mathbf{k}}^{<}(t'-t)$$

Feynman propagator (time-ordered)

$$G_{\mathbf{k}}^{F}(t-t') = \theta(t-t')G_{\mathbf{k}}^{>}(t-t') + \theta(t'-t)G_{\mathbf{k}}^{<}(t-t')$$

consider real and imaginary components

real part, anticommutator, statistical two-point function

$$F_{\mathbf{k}}(t - t') = \frac{1}{2} \left[G_{\mathbf{k}}^{>}(t - t') + G_{\mathbf{k}}^{<}(t - t') \right] = \frac{1}{2} \left\langle \{ \phi_{\mathbf{k}}(t), \phi_{\mathbf{k}}(t') \} \right\rangle$$
$$= \frac{1}{2\omega_{\mathbf{k}}} \left[1 + 2n_{B}(\omega_{\mathbf{k}}) \right] \cos[\omega_{\mathbf{k}}(t - t')]$$

imaginary part, commutator, spectral function

$$\rho_{\mathbf{k}}(t-t') = G_{\mathbf{k}}^{>}(t-t') - G_{\mathbf{k}}^{<}(t-t') = \left\langle \left[\phi_{\mathbf{k}}(t), \phi_{\mathbf{k}}(t')\right] \right\rangle$$
$$= \frac{1}{i\omega_{\mathbf{k}}} \sin[\omega_{\mathbf{k}}(t-t')]$$

note:

 \bullet p does not know about thermal occupation numbers

$$\mathbf{I}_{\frac{\partial}{\partial t}} \rho_{\mathbf{k}}(t-t') \big|_{t=t'} = -i = \langle [\pi_{\mathbf{k}}(t), \phi_{\mathbf{k}}(t)] \rangle \quad \text{commutation relation}$$

retarded and advanced Green functions

$$G_{\mathbf{k}}^{R}(t-t') = i\theta(t-t') \left\langle \left[\phi_{\mathbf{k}}(t), \phi_{\mathbf{k}}(t')\right] \right\rangle$$
$$= i\theta(t-t')\rho_{\mathbf{k}}(t-t') = G_{\mathbf{k}}^{A}(t'-t)$$

causality:

$$G^{R}_{\mathbf{k}}(t-t') = 0$$
 when $t < t'$ $G^{A}_{\mathbf{k}}(t-t') = 0$ when $t > t'$

go to frequency space:

$$f(\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} f(t) \qquad \qquad f(t) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \, e^{-i\omega t} f(\omega)$$

spectral function

• in real-time $\rho_{\mathbf{k}}(t-t') = -i\sin[\omega_{\mathbf{k}}(t-t')]/\omega_{\mathbf{k}}$

$$\rho_{\mathbf{k}}(\omega) = \frac{2\pi}{2\omega_{\mathbf{k}}} \left[\delta(\omega - \omega_{\mathbf{k}}) - \delta(\omega + \omega_{\mathbf{k}}) \right] = 2\pi\epsilon(\omega)\delta\left(\omega^2 - \omega_{\mathbf{k}}^2\right)$$

- single-particle peak at $\omega = \pm \omega_{\mathbf{k}}$
- **s** odd function: $\epsilon(\omega) \equiv \theta(\omega) \theta(-\omega)$ $\rho_{\mathbf{k}}(-\omega) = -\rho_{\mathbf{k}}(\omega)$

sum rule

$$\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\omega \rho_{\mathbf{k}}(\omega) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \,\frac{2\pi\omega}{2\omega_{\mathbf{k}}} \left[\delta(\omega - \omega_{\mathbf{k}}) - \delta(\omega + \omega_{\mathbf{k}})\right] = 1$$

• consequence of commutation relation $\frac{\partial}{\partial t}\rho_{\mathbf{k}}(t-t')|_{t=t'} = -i$

Wightman/statistical two-point functions in frequency-space

all proportional to spectral function

$$G_{\mathbf{k}}^{>}(\omega) = [n_{B}(\omega) + 1] \rho_{\mathbf{k}}(\omega)$$
$$G_{\mathbf{k}}^{<}(\omega) = n_{B}(\omega)\rho_{\mathbf{k}}(\omega)$$
$$F_{\mathbf{k}}^{>}(\omega) = \left[n_{B}(\omega) + \frac{1}{2}\right]\rho_{\mathbf{k}}(\omega)$$

with statistical factors, such that e.g.

$$\rho = G^{>} - G^{<} \qquad F = \frac{1}{2} \left(G^{>} + G^{<} \right)$$

retarded/advanced Green functions: causality

analytical in upper/lower half place

$$G_{\mathbf{k}}^{R/A}(\omega) = \frac{1}{\omega_{\mathbf{k}}^2 - (\omega \pm i\epsilon)^2}$$

• retarded: poles at $\omega = \pm \omega_{\mathbf{k}} - i\epsilon$, below real axis

•
$$G^A_{\mathbf{k}}(\omega) = G^{R^*}_{\mathbf{k}}(\omega) = G^R_{\mathbf{k}}(-\omega)$$

relate to spectral function via dispersion relation

$$G_{\mathbf{k}}^{R}(\omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\rho_{\mathbf{k}}(\omega')}{\omega' - \omega - i\epsilon}$$

verify using

$$\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \, \frac{e^{-i\omega t}}{\omega + i\epsilon} = -i\theta(t)$$

Dubna, August 2017 - p. 15

- combine dispersion relation $G_{\mathbf{k}}^{R}(\omega) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\rho_{\mathbf{k}}(\omega')}{\omega' \omega i\epsilon}$
- with identity $\frac{1}{x+i\epsilon} = \mathcal{P}\frac{1}{x} i\pi\delta(x)$

or

$$\frac{1}{x+i\epsilon} - \frac{1}{x-i\epsilon} = \frac{-2i\epsilon}{x^2+\epsilon^2} = -2i\pi\delta(x)$$

this yields

$$\rho_{\mathbf{k}}(\omega) = -i \left[G_{\mathbf{k}}^{R}(\omega) - G_{\mathbf{k}}^{A}(\omega) \right] = 2 \mathrm{Im} \, G_{\mathbf{k}}^{R}(\omega)$$

- spectral density is
 - imaginary part of retarded Green function
 - discontinuity across the real axis

in summary:

in thermal equilibrium, all Green functions can be expressed in terms of the corresponding spectral function, combined with thermal occupation numbers

- so far this was demonstrated for free fields
- but also correct nonperturbatively, due to Kubo-Martin-Schwinger (KMS) condition

KMS condition

consider two Wightman functions for operators A(t), B(t)

 $G^{>}(t_1 - t_2) = \langle A(t_1)B(t_2) \rangle \qquad G^{<}(t_1 - t_2) = \langle B(t_2)A(t_1) \rangle$

- thermal expectation value: $\langle O \rangle = \frac{1}{Z} \operatorname{Tr} e^{-\beta H} O$ $Z = \operatorname{Tr} e^{-\beta H}$
- time evolution: $A(t) = e^{iHt}A(0)e^{-iHt}$
- note: in equilibrium \Rightarrow time translation invariance $t_1 t_2$

cyclicity of the trace

$$G^{>}(t_{1} - t_{2}) = \frac{1}{Z} \operatorname{Tr} e^{-\beta H} e^{iHt_{1}} A(0) e^{-iHt_{1}} e^{iHt_{2}} B(0) e^{-iHt_{2}}$$
$$= \frac{1}{Z} \operatorname{Tr} e^{-\beta H} e^{\beta H} e^{iHt_{2}} B(0) e^{-iHt_{2}} e^{-\beta H} e^{iHt_{1}} A(0) e^{-iHt_{1}}$$
$$= \frac{1}{Z} \operatorname{Tr} e^{-\beta H} B(t_{2} - i\beta) A(t_{1}) = G^{<}(t_{1} - t_{2} + i\beta)$$

KMS condition

identity $G^{>}(t_1 - t_2) = G^{<}(t_1 - t_2 + i\beta)$

- scrucial: same hamiltonian for time evolution e^{iHt} and density matrix $e^{-\beta H}$
- hence only holds in thermal equilibrium
- since *H* includes interactions, holds nonperturbatively

in frequency space
$$G^>(\omega) = e^{\beta \omega} G^<(\omega)$$

- relate all other Green functions
- spectral function $\rho(\omega) = G^{>}(\omega) G^{<}(\omega) = (e^{\beta\omega} 1)G^{<}(\omega)$
- hence $G^{>}(\omega) = [n_B(\omega) + 1] \rho(\omega)$ $G^{<}(\omega) = n_B(\omega)\rho(\omega)$
- Bose distribution emerges exactly
- all interesting physics is hidden in spectral function

Fermions

few changes due to anticommuting fields

Wightman functions

 $S^{>}(t_1 - t_2) = \left\langle \psi(t_1)\bar{\psi}(t_2) \right\rangle \qquad S^{<}(t_1 - t_2) = -\left\langle \bar{\psi}(t_2)\psi(t_1) \right\rangle$

KMS condition

$$S^{>}(t_1 - t_2) = -S^{<}(t_1 - t_2 + i\beta) \qquad S^{>}(\omega) = -e^{\beta\omega}S^{<}(\omega)$$

spectral function, anticommutator

 $\rho(t_1 - t_2) = \left\langle \{\psi(t_1), \bar{\psi}(t_2)\} \right\rangle = S^{>}(t_1 - t_2) - S^{<}(t_1 - t_2)$

• Fermi distribution $n_F(\omega) = 1/(e^{\omega/T} + 1)$ emerges

$$S^{>}(\omega) = [1 - n_F(\omega)]\rho(\omega) \qquad S^{<}(\omega) = -n_F(\omega)\rho(\omega)$$

Fermions vs bosons

bosons

$$G^{>}(\omega) = [1 + n_B(\omega)]\rho(\omega) \qquad G^{<}(\omega) = n_B(\omega)\rho(\omega)$$

Solution Bose enhancement $1 \rightarrow 1 + n_B$

fermions

$$S^{>}(\omega) = [1 - n_F(\omega)]\rho(\omega) \qquad S^{<}(\omega) = -n_F(\omega)\rho(\omega)$$

- **Pauli blocking** $1 \rightarrow 1 n_F$
- general rule: from bosons to fermions $n_B \rightarrow -n_F$

connection with lattice QCD: euclidean time

Euclidean correlators

- interpret $e^{-\beta H}$ as evolution operator
- euclidean time $\tau = it$: $0 < \tau < \beta = 1/T$
- correlator $G_{\mathbf{k}}^{E}(\tau) = \langle \phi_{\mathbf{k}}(\tau) \phi_{\mathbf{k}}(0) \rangle$

$$G_{\mathbf{k}}^{E}(\tau) = T \sum_{n} e^{-i\omega_{n}\tau} G_{\mathbf{k}}^{E}(\omega_{n}) \qquad G_{\mathbf{k}}^{E}(\omega_{n}) = \int_{0}^{1/T} d\tau \, e^{i\omega_{n}\tau} G_{\mathbf{k}}^{E}(\tau)$$

- (anti)periodic boundary conditions for bosons (fermions)
- Matsubara frequencies $\omega_n = 2\pi nT$ [$(2n+1)\pi T$]
- free correlator for scalar field

$$G_{\mathbf{k}}^{E}(\tau) = \frac{\cosh[\omega_{\mathbf{k}}(\tau - 1/2T)]}{2\omega_{\mathbf{k}}\sinh(\omega_{\mathbf{k}}/2T)} \qquad G_{\mathbf{k}}^{E}(\omega_{n}) = \frac{1}{\omega_{n}^{2} + \omega_{\mathbf{k}}^{2}}$$

Euclidean correlators

dispersion relation and analytical continuation

$$G_{\mathbf{k}}^{E}(\omega_{n}) = \frac{1}{\omega_{n}^{2} + \omega_{\mathbf{k}}^{2}} \qquad \qquad G_{\mathbf{k}}^{R}(\omega) = \frac{1}{-(\omega + i\epsilon)^{2} + \omega_{\mathbf{k}}^{2}}$$

relation between euclidean and retarded Green functions

$$G^R_{\mathbf{k}}(\omega) = G^E_{\mathbf{k}}(i\omega_n \to w + i\epsilon)$$

general dispersion relation

$$G_{\mathbf{k}}^{E}(\omega_{n}) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\rho_{\mathbf{k}}(\omega)}{\omega - i\omega_{n}}$$

all functions related by analyticity and KMS conditions

Thermal QCD

all functions related by analyticity and KMS conditions

- QCD: strongly interacting system
- do not rely on perturbation theory
- Iattice simulations
- yield numerically determined euclidean correlators

make relation with spectral functions more explicit

spectral relation between $G_{\mathbf{k}}^{E}(\tau)$ and $\rho_{\mathbf{k}}(\omega)$

$$G_{\mathbf{k}}^{E}(\omega_{n}) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\rho_{\mathbf{k}}(\omega)}{\omega - i\omega_{n}}$$

go to euclidean time

$$G_{\mathbf{k}}^{E}(\tau) = T \sum_{n} e^{-i\omega_{n}\tau} \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\rho_{\mathbf{k}}(\omega)}{\omega - i\omega_{n}}$$
$$= \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho_{\mathbf{k}}(\omega)$$

with kernel

$$K(\tau,\omega) = T \sum_{n} \frac{e^{-i\omega_n \tau}}{\omega - i\omega_n}$$

spectral relation $G^E_{\mathbf{k}}(\tau) = \int \frac{d\omega}{2\pi} K(\tau, \omega) \rho_{\mathbf{k}}(\omega)$ kernel

$$K(\tau,\omega) = T \sum_{n} \frac{e^{-i\omega_n \tau}}{\omega - i\omega_n} = \begin{cases} e^{-\omega \tau} \left[1 + n_B(\omega)\right] & \text{bosons} \\ e^{-\omega \tau} \left[1 - n_F(\omega)\right] & \text{fermions} \end{cases}$$

bosons:

 $\rho_{\mathbf{k}}(-\omega)=-\rho_{\mathbf{k}}(\omega)$ odd \Rightarrow odd part of kernel survives

$$K_B(\tau, \omega) = \ldots = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

note: $1+n_B(\omega) = \frac{e^{\omega/2T}}{2\sinh(\omega/2T)}$ $n_B(\omega)+n_B(-\omega)+1 = 0$

fermions: slightly more involved, see later

spectral relation
$$G^{E}(\tau) = \int \frac{d\omega}{2\pi} K(\tau, \omega) \rho(\omega)$$

If $G^E(\omega_n)$ is known analytically: simple route

$$G^E(\tau) \rightarrow G^E(\omega_n) \rightarrow G^R(\omega) \rightarrow \rho(\omega)$$

- but correlators only known numerically (i.e. with errors) at finite number of points
- In this is a second second
- If or bosons: kernel symmetric K(τ, ω) = K(1/T − τ, ω)
 ⇒ at most N_τ/2 points
- $\rho(\omega)$ in principle continuous (and possibly nonanalytical) function with $-\infty < \omega < \infty$

spectral relation
$$G_{\mathbf{k}}^{E}(\tau) = \int \frac{d\omega}{2\pi} K(\tau, \omega) \rho_{\mathbf{k}}(\omega)$$

- ill-posed problem: direct inversion not defined
- extract continuous function $\rho_{\mathbf{k}}(\omega)$ from finite $\mathcal{O}(N_{\tau})$ number of numerically determined data points
- Iongstanding problem across science: image reconstruction
- provide some additional input to regulate the inversion:
 - Bayesian methods
 Maximum Entropy Method (MEM)
 Bayesian Reconstruction (BR)
 L.L.

possibly see other talks (Rothkopf, Francis, Kaczmarek)

Thermal spectral functions

next time: what to expect?

already encountered single-particle spectral function

$$\rho_{\mathbf{k}}(\omega) = 2\pi\epsilon(\omega)\delta\left(\omega^2 - \omega_{\mathbf{k}}^2\right)$$

single-particle peak at $\omega = \pm \omega_{\mathbf{k}}$

• relevant for QCD at T = 0: spectrum of hadrons

increase the temperature:

- in-medium effects
- thermal broadening
- deconfinement

- symmetry restoration
- transport

. . .

discuss this for mesons and baryons