Spectral quantities in thermal QCD

II: mesons, transport, baryons

Gert Aarts

Thermal QCD

all Green functions related by analyticity and KMS conditions

- QCD: strongly interacting system
- do not rely on perturbation theory
- lattice simulations
- yield numerically determined euclidean correlators
relation between Euclidean correlators and spectral functions

$$
G^{E}(\tau)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} K(\tau, \omega) \rho(\omega)
$$

analyse for mesons and baryons

Thermal spectral functions

what to expect?

- already encountered single-particle spectral function

$$
\rho_{\mathbf{k}}(\omega)=2 \pi \epsilon(\omega) \delta\left(\omega^{2}-\omega_{\mathbf{k}}^{2}\right)
$$

- single-particle peak at $\omega= \pm \omega_{\mathrm{k}}$
- relevant for QCD at $T=0$: spectrum of hadrons
increase the temperature:
- in-medium effects
- thermal broadening
- deconfinement
- symmetry restoration
- transport
- ...
discuss this for mesons and baryons

Mesons

2 quark + anti-quark: simplest operator $O_{H}=\bar{\psi} \Gamma_{H} \psi$

- Γ_{H} depends on the channel:

$$
\begin{array}{ll}
\text { scalar } & \Gamma_{H}=\mathbb{1} \\
\text { pseudoscalar } & \Gamma_{H}=\gamma_{5} \\
\text { vector } & \Gamma_{H}=\gamma_{\mu} \\
\text { axial-vector } & \Gamma_{H}=\gamma_{\mu} \gamma_{5}
\end{array}
$$

- simple diagram

- for flavour singlets: also disconnected diagrams (typically not included)

Mesonic spectral functions

what to expect?
consider two extremes:

- at $T=0$: QCD spectrum single-particle peaks
at $\omega=M$
+ excited states

- at $T \gg T_{c}$: deconfined plasma (quasi-)free quarks and gluons

Example: Vector channel

electromagnetic current $j_{\mu}(t, \mathbf{x})=\bar{\psi}(t, \mathbf{x}) \gamma_{\mu} \psi(t, \mathbf{x})$
spectral function $\rho_{\mu \nu}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right)=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]\right\rangle$
contains information on

Example: Vector channel

electromagnetic current $j_{\mu}(t, \mathbf{x})=\bar{\psi}(t, \mathbf{x}) \gamma_{\mu} \psi(t, \mathbf{x})$
spectral function $\rho_{\mu \nu}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right)=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]\right\rangle$
contains information on

- $T<T_{c}$: vector ρ particle - in-medium modification disappearance above T_{c}

Example: Vector channel

electromagnetic current $j_{\mu}(t, \mathbf{x})=\bar{\psi}(t, \mathbf{x}) \gamma_{\mu} \psi(t, \mathbf{x})$
spectral function $\rho_{\mu \nu}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right)=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]\right\rangle$
contains information on

- $T<T_{c}$: vector ρ particle - in-medium modification disappearance above T_{c}
- fluctuations of charge: susceptibility $\chi \sim \rho_{00}$

Example: Vector channel

electromagnetic current $j_{\mu}(t, \mathbf{x})=\bar{\psi}(t, \mathbf{x}) \gamma_{\mu} \psi(t, \mathbf{x})$
spectral function $\rho_{\mu \nu}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right)=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]\right\rangle$
contains information on

- $T<T_{c}$: vector ρ particle - in-medium modification disappearance above T_{c}
- fluctuations of charge: susceptibility $\chi \sim \rho_{00}$
- conductivity, $\sigma \sim \rho_{i i}(\omega) / \omega$ with $\omega \rightarrow 0$ diffusion $D=\sigma / \chi$

Example: Vector channel

electromagnetic current $j_{\mu}(t, \mathbf{x})=\bar{\psi}(t, \mathbf{x}) \gamma_{\mu} \psi(t, \mathbf{x})$
spectral function $\rho_{\mu \nu}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right)=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]\right\rangle$
contains information on

- $T<T_{c}$: vector ρ particle - in-medium modification disappearance above T_{c}
- fluctuations of charge: susceptibility $\chi \sim \rho_{00}$
- conductivity, $\sigma \sim \rho_{i i}(\omega) / \omega$ with $\omega \rightarrow 0$ diffusion $D=\sigma / \chi$
- hydrodynamic behaviour $\rho_{\mu \nu}(\omega, \mathbf{k})$ with $\omega, k=|\mathbf{k}| \rightarrow 0$

Example: Vector channel

electromagnetic current $j_{\mu}(t, \mathbf{x})=\bar{\psi}(t, \mathbf{x}) \gamma_{\mu} \psi(t, \mathbf{x})$
spectral function $\rho_{\mu \nu}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right)=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]\right\rangle$
contains information on

- $T<T_{c}$: vector ρ particle - in-medium modification disappearance above T_{c}
- fluctuations of charge: susceptibility $\chi \sim \rho_{00}$
- conductivity, $\sigma \sim \rho_{i i}(\omega) / \omega$ with $\omega \rightarrow 0$ diffusion $D=\sigma / \chi$
- hydrodynamic behaviour $\rho_{\mu \nu}(\omega, \mathbf{k})$ with $\omega, k=|\mathbf{k}| \rightarrow 0$
- photon production, rate $\sim n_{\mathrm{B}}(k) / k \rho_{\mu \mu}(k, \mathbf{k})$

Example: Vector channel

electromagnetic current $j_{\mu}(t, \mathbf{x})=\bar{\psi}(t, \mathbf{x}) \gamma_{\mu} \psi(t, \mathbf{x})$
spectral function $\rho_{\mu \nu}\left(t-t^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right)=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right]\right\rangle$
contains information on

- $T<T_{c}$: vector ρ particle - in-medium modification disappearance above T_{c}
- fluctuations of charge: susceptibility $\chi \sim \rho_{00}$
- conductivity, $\sigma \sim \rho_{i i}(\omega) / \omega$ with $\omega \rightarrow 0$ diffusion $D=\sigma / \chi$
- hydrodynamic behaviour $\rho_{\mu \nu}(\omega, \mathbf{k})$ with $\omega, k=|\mathbf{k}| \rightarrow 0$
- photon production, rate $\sim n_{\mathrm{B}}(k) / k \rho_{\mu \mu}(k, \mathbf{k})$
- dilepton production, rate $\sim n_{\mathrm{B}}(\omega) / M^{2} \rho_{\mu \mu}(\omega, \mathbf{k})$
with $M^{2}=\omega^{2}-\mathbf{k}^{2}$ and $m_{\ell} \sim 0$

Mesonic spectral functions

what to expect at $T \gg T_{c}$?
GA \& Martínez Resco, hep-lat/0507004

- use perturbation theory: lowest-order diagram
- same computation as imaginary part of self-energy
- spectral function: cut diagram

- put internal lines onshell
- two processes:
- decay: $\omega^{2}>\mathbf{p}^{2}+4 m^{2}$

- scattering: $\omega^{2}<\mathbf{p}^{2}$ below the lightcone only, Landau damping

Mesonic spectral functions

meson spectral function at leading order in g^{2}

$$
\begin{aligned}
& \rho_{H}(\omega, \mathbf{p})=2 \pi N_{c} \int_{\mathbf{k}} \delta(\mathbf{r}-\mathbf{p}-\mathbf{k})\{ \\
& \quad\left(a_{H}^{(1)}+a_{H}^{(2)} \frac{\mathbf{k} \cdot \mathbf{r}}{\omega_{\mathbf{k}} \omega_{\mathbf{r}}}+a_{H}^{(3)} \frac{m^{2}}{\omega_{\mathbf{k}} \omega_{\mathbf{r}}}\right)\left[n_{F}\left(\omega_{\mathbf{k}}\right)-n_{F}\left(\omega_{\mathbf{r}}\right)\right] \delta\left(\omega+\omega_{\mathbf{k}}-\omega_{\mathbf{r}}\right) \\
& \quad+\left(a_{H}^{(1)}-a_{H}^{(2)} \frac{\mathbf{k} \cdot \mathbf{r}}{\omega_{\mathbf{k}} \omega_{\mathbf{r}}}-a_{H}^{(3)} \frac{m^{2}}{\omega_{\mathbf{k}} \omega_{\mathbf{r}}}\right)\left[1-n_{F}\left(\omega_{\mathbf{k}}\right)-n_{F}\left(\omega_{\mathbf{r}}\right)\right] \delta\left(\omega-\omega_{\mathbf{k}}-\omega_{\mathbf{r}}\right) \\
& \quad-(\omega \rightarrow-\omega)\}
\end{aligned}
$$

- coefficients $a_{H}^{(i)}$ depend on the channel
- scattering:

$$
n_{F}\left(\omega_{\mathbf{k}}\right)-n_{F}\left(\omega_{\mathbf{r}}\right)=n_{F}\left(\omega_{\mathbf{k}}\right)\left[1-n_{F}\left(\omega_{\mathbf{r}}\right)\right]-\left[1-n_{F}\left(\omega_{\mathbf{k}}\right)\right] n_{F}\left(\omega_{\mathbf{r}}\right)
$$

- decay: $1-n_{F}\left(\omega_{\mathbf{k}}\right)-n_{F}\left(\omega_{\mathbf{r}}\right)$

$$
=\left[1-n_{F}\left(\omega_{\mathbf{k}}\right)\right]\left[1-n_{F}\left(\omega_{\mathbf{r}}\right)\right]-n_{F}\left(\omega_{\mathbf{k}}\right) n_{F}\left(\omega_{\mathbf{r}}\right)
$$

Mesonic spectral functions

what to expect at $T \gg T_{c}$?

- decay: $\omega^{2}>\mathbf{p}^{2}+4 m^{2}$
- scattering: $\omega^{2}<\mathbf{p}^{2}$ below the lightcone

- higher-order interactions will fill in the gap
consider one particular higher-order effect

Hydrodynamic limit

- higher-order diagrams: new physics enters
- transport and hydrodynamics: vector channel
- diffusion of conserved charge
- long (transport) time scales $\tau_{\text {tr }}=1 / \Gamma \sim 1 / g^{4} T$
- form of spectral function dictated by diffusion equation and current conservation

$$
\partial_{t} n(\mathbf{x}, t)=D \nabla^{2} n(\mathbf{x}, t) \quad \partial_{t} n(\mathbf{x}, t)+\nabla \cdot \mathbf{j}(\mathbf{x}, t)=0
$$

- diagrams: extensive resummation, at leading order
- transport peak at zero momentum

$$
\rho_{i i}(\omega, \mathbf{0}) \sim \frac{\Gamma \omega}{\omega^{2}+\Gamma^{2}}
$$

- slope at $\omega=0$: conductivity $\sigma=D \chi \sim 1 / \Gamma$

Conductivity/diffusion

- electrical conductivity σ
- charge susceptibility χ
- both σ and χ proportional to EM factor

$$
C_{\mathrm{em}}=e^{2} \sum_{f} q_{f}^{2} \quad q_{f}=\frac{2}{3},-\frac{1}{3}
$$

- diffusion coefficient $D=\sigma / \chi$
- C_{em} cancels
- in $\operatorname{SU}\left(N_{c}\right)$ theories, factors of N_{c} cancel
- finite large N_{c} limit
- weak coupling: $D \sim 1 / g^{4} T$
- strong coupling: $D=1 / 2 \pi T$ (holography)

Conductivity/diffusion

- linear response: Kubo relation

$$
\sigma=\lim _{\omega \rightarrow 0} \frac{1}{6 \omega} \rho_{i i}(\omega, \mathbf{0})
$$

- spectral function

$$
\rho_{\mu \nu}(t, \mathbf{x})=\left\langle\left[j_{\mu}(t, \mathbf{x}), j_{\nu}(0, \mathbf{0})\right]\right\rangle
$$

- current-current spectral function, j_{μ} is EM current
some FASTSUM results (see below for details)

```
PRL 111 (2013) 172001 [arXiv:1307.6763 [hep-lat]]
JHEP 02 (2015) 186 [arXiv:1412.6411 [hep-lat]]
```

see also lectures by Olaf

Conductivity

- conductivity $C_{\mathrm{em}}^{-1} \sigma / T$

$$
C_{\mathrm{em}}=e^{2} \sum_{f} q_{f}^{2}
$$

- temperature dependent
- agreement with previous results above T_{c}

Susceptibilies

- fluctuations of isospin, electrical charge, baryon number, flavour

- agreement with previous (mostly staggered) results
- some flavour dependence

Diffusion coefficient

- combination of results: $D=\sigma / \chi_{Q}$

- consistent with strongly coupled plasma, $2 \pi T D \sim 1$
- minimum around transition, c.f. η / s

Mesons in a medium

mesons in a medium very well studied

- hadronic phase: thermal broadening, mass shift
- QGP: deconfinement/dissolution/melting
- quarkonia survival as thermometer
- transport: conductivity/dileptons from vector current
- chiral symmetry restoration
relatively easy on the lattice
- high-precision correlators
what about baryons?

Baryons in a medium

lattice studies of baryons at finite temperature very limited

- screening masses De Tar and Kogut 1987
- ... with a small chemical potential QCD-taro: Pushkina, de Forcrand, Kim, Nakamura, Stamatescu et al 2005
- temporal correlators Datta, Gupta, Mathur et al 2013
not much more ...
- effective models, mostly at $T \sim 0$ and nuclear density \Rightarrow parity doubling models De Tar and Kunihiro 1989
but understanding highly relevant for e.g. hadron resonance gas (HRG) descriptions in confined phase

Baryons and HRG

ratio of fluctuations: $\quad\langle B Q\rangle /\langle B B\rangle$
fluctuations of charged baryons / fluctuations of all baryons

Karsch (HotQCD)
arXiv:1706.01620
standard HRG is somewhat off

- what is the source of this discrepancy?
- more states? residual interactions? in-medium effects?

Outline

baryons across the deconfinement transition:

- some basic thermal field theory
- lattice QCD - FASTSUM collaboration
- baryon correlators
- in-medium effects below T_{c}
- parity doubling above T_{c}
- spectral functions

```
FASTSUM: PRD 92 (2015) 014503 [arXiv:1502.03603 [hep-lat]]
    + JHEP 06 (2017) 034 [arXiv:1703.09246 [hep-lat]]
    + in preparation
```


Baryons

correlators

$$
G^{\alpha \alpha^{\prime}}(x)=\left\langle O^{\alpha}(x) \bar{O}^{\alpha^{\prime}}(0)\right\rangle
$$

examples: N, Δ, Ω baryons

$$
\begin{aligned}
O_{N}^{\alpha}(x) & =\epsilon_{a b c} u_{a}^{\alpha}(x)\left(d_{b}^{T}(x) C \gamma_{5} u_{c}(x)\right) \\
O_{\Delta, i}^{\alpha}(x) & =\epsilon_{a b c}\left[2 u_{a}^{\alpha}(x)\left(d_{b}^{T}(x) C \gamma_{i} u_{c}(x)\right)+d_{a}^{\alpha}(x)\left(u_{b}^{T}(x) C \gamma_{i} u_{c}(x)\right)\right] \\
O_{\Omega, i}^{\alpha}(x) & =\epsilon_{a b c} s_{a}^{\alpha}(x)\left(s_{b}^{T}(x) C \gamma_{i} s_{c}(x)\right)
\end{aligned}
$$

with C charge conjugation matrix:

$$
C^{\dagger} C=\mathbb{1} \quad \gamma_{\mu}^{T}=-C \gamma_{\mu} C^{-1} \quad C^{T}=-C^{-1}
$$

action on fermionic operator:

$$
\mathcal{C O C}^{-1}=O^{(c)}=C^{-1} \bar{O}^{T} \quad \mathcal{C} \bar{O} \mathcal{C}^{-1}=\bar{O}^{(c)}=-O^{T} C
$$

Baryons

- essential difference with mesons: role of parity

$$
\mathcal{P} O(\tau, \mathbf{x}) \mathcal{P}^{-1}=\gamma_{4} O(\tau,-\mathbf{x})
$$

- positive/negative parity operators

$$
O_{ \pm}(x)=P_{ \pm} O(x) \quad P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{4}\right)
$$

- no parity doubling in Nature: nucleon ground state
positive parity: $\quad m_{+}=m_{N}=0.939 \mathrm{GeV}$ negative parity: $\quad m_{-}=m_{N^{*}}=1.535 \mathrm{GeV}$
- thread: what happens as temperature increases?

Reminder: spectral properties - bosons

- bosonic operators

$$
G(\tau, \mathbf{p})=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} K(\tau, \omega) \rho(\omega, \mathbf{p})
$$

- kernel

$$
(\tilde{\tau}=\tau-1 / 2 T)
$$

$K_{\text {boson }}(\tau, \omega)=\frac{\cosh (\omega \tilde{\tau})}{\sinh (\omega / 2 T)}=\left[1+n_{B}(\omega)\right] e^{-\omega \tau}+n_{B}(\omega) e^{\omega \tau}$

- kernel symmetric around $\tau=1 / 2 T$, odd in ω
- singular as $\omega \rightarrow 0$

$$
\lim _{\omega \rightarrow 0} K_{\text {boson }}(\tau, \omega)=\frac{2 T}{\omega}
$$

- relevant for transport $\in A \&$ Martínez Resco, hep-ph/0203177

Spectral properties: fermions

$$
G^{\alpha \alpha^{\prime}}(\tau, \mathbf{p})=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} K(\tau, \omega) \rho^{\alpha \alpha^{\prime}}(\omega, \mathbf{p})
$$

with

$$
\begin{gathered}
G^{\alpha \alpha^{\prime}}\left(x-x^{\prime}\right)=\left\langle O^{\alpha}(x) \bar{O}^{\alpha^{\prime}}\left(x^{\prime}\right)\right\rangle \\
\rho^{\alpha \alpha^{\prime}}\left(x-x^{\prime}\right)=\left\langle\left\{O^{\alpha}(x), \bar{O}^{\alpha^{\prime}}\left(x^{\prime}\right)\right\}\right\rangle
\end{gathered}
$$

- fermionic Matsubara frequencies

$$
K(\tau, \omega)=T \sum_{n} \frac{e^{-i \omega_{n} \tau}}{\omega-i \omega_{n}}=\frac{e^{-\omega \tau}}{1+e^{-\omega / T}}=e^{-\omega \tau}\left[1-n_{F}(\omega)\right]
$$

- kernel not symmetric, instead

$$
K(1 / T-\tau, \omega)=K(\tau,-\omega)
$$

Kernels

- bosons $\quad(\tilde{\tau}=\tau-1 / 2 T)$

$$
K_{\text {boson }}(\tau, \omega)=\frac{\cosh (\omega \tilde{\tau})}{\sinh (\omega / 2 T)}=\left[1+n_{B}(\omega)\right] e^{-\omega \tau}+n_{B}(\omega) e^{\omega \tau}
$$

- fermions: even and odd terms

$$
\begin{gathered}
K(\tau, \omega)=\frac{1}{2}\left[K_{\mathrm{e}}(\tau, \omega)+K_{\mathrm{o}}(\tau, \omega)\right], \\
K_{\mathrm{e}}(\tau, \omega)=\frac{\cosh (\omega \tilde{\tau})}{\cosh (\omega / 2 T)}=\left[1-n_{F}(\omega)\right] e^{-\omega \tau}+n_{F}(\omega) e^{\omega \tau} \\
K_{\mathrm{o}}(\tau, \omega)=-\frac{\sinh (\omega \tilde{\tau})}{\cosh (\omega / 2 T)}=\left[1-n_{F}(\omega)\right] e^{-\omega \tau}-n_{F}(\omega) e^{\omega \tau}
\end{gathered}
$$

- no singular behaviour $2 T / \omega$ for fermions, no transport subtlety

Reminder: spectral properties - bosons

- spectral decomposition

$$
\begin{aligned}
\rho(x) & =\left\langle\left[O(x), O^{\dagger}(0)\right]\right\rangle=\frac{1}{Z} \operatorname{Tr} e^{-\beta H}\left[O(x), O^{\dagger}(0)\right] \\
& =\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}\langle n|\left[O(x), O^{\dagger}(0)\right]|n\rangle
\end{aligned}
$$

- write out commutator and insert complete set of states $\sum_{m}|m\rangle\langle m|=\mathbb{1}$
- use $O(x)=e^{-i k \cdot x} O(0) e^{i k \cdot x}$, with $k^{0}=H$
- go to momentum space

$$
\left.\rho(p)=\frac{1}{Z} \sum_{n, m}\left(e^{-k_{n}^{0} / T}-e^{-k_{m}^{0} / T}\right)|\langle n| O(0)| m\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p+k_{n}-k_{m}\right)
$$

- if $O^{\dagger}= \pm O \quad \Rightarrow \quad \omega \rho(\omega, \mathbf{p}) \geq 0 \quad$ positivity

Spectral decomposition: Positivity

$$
\rho^{\alpha \beta}(x)=\sum \gamma_{\mu}^{\alpha \beta} \rho_{\mu}(x)+\mathbb{1}^{\alpha \beta} \rho_{m}(x)
$$

- take trace with $\gamma_{4}, P_{ \pm}=\left(\mathbb{1} \pm \gamma_{4}\right) / 2$:

$$
\begin{aligned}
& \left.\rho_{4}(p)=\frac{1}{Z} \sum_{n, m, \alpha}\left(e^{-k_{n}^{0} / T}+e^{-k_{m}^{0} / T}\right) \frac{1}{4}\left|\langle n| O^{\alpha}(0)\right| m\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p+k_{n}-k_{m}\right) \\
& \left.\rho_{ \pm}(p)=\frac{ \pm 1}{Z} \sum_{n, m, \alpha}\left(e^{-k_{n}^{0} / T}+e^{-k_{m}^{0} / T}\right) \frac{1}{4}\left|\langle n| O_{ \pm}^{\alpha}(0)\right| m\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p+k_{n}-k_{m}\right)
\end{aligned}
$$

- $\rho_{4}(p), \pm \rho_{ \pm}(p) \geq 0$ for all ω
- take trace with II

$$
\rho_{m}(p)=\left[\rho_{+}(p)+\rho_{-}(p)\right] / 4
$$

not sign definite

Spectral decomposition: Positivity

$$
\rho^{\alpha \beta}(x)=\sum \gamma_{\mu}^{\alpha \beta} \rho_{\mu}(x)+\mathbb{1}^{\alpha \beta} \rho_{m}(x)
$$

- take trace with $\gamma_{4}, P_{ \pm}=\left(\mathbb{1} \pm \gamma_{4}\right) / 2$:

$$
\begin{aligned}
& \left.\rho_{4}(p)=\frac{1}{Z} \sum_{n, m, \alpha}\left(e^{-k_{n}^{0} / T}+e^{-k_{m}^{0} / T}\right) \frac{1}{4}\left|\langle n| O^{\alpha}(0)\right| m\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p+k_{n}-k_{m}\right) \\
& \left.\rho_{ \pm}(p)=\frac{ \pm 1}{Z} \sum_{n, m, \alpha}\left(e^{-k_{n}^{0} / T}+e^{-k_{m}^{0} / T}\right) \frac{1}{4}\left|\langle n| O_{ \pm}^{\alpha}(0)\right| m\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p+k_{n}-k_{m}\right)
\end{aligned}
$$

- $\rho_{4}(p), \pm \rho_{ \pm}(p) \geq 0$ for all ω
- take trace with II

$$
\rho_{m}(p)=\left[\rho_{+}(p)+\rho_{-}(p)\right] / 4
$$

not sign definite

Next lecture

some more formal properties of baryon correlators
and then on to recent lattice results

