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A practical introduction
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Disclaimer

The material covered in this lecture is not entirely original, it has
been previously shown and has been compiled here by the author for

pedagogical presentation. As such figures and slides may have been
copied from other sources.
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Exercises

A number of home and in class exercises are strewn across the lectures.
These are purely voluntary. Solutions in general will not be given.
However, we can discuss the solution to the exercises outside of class, or
if you do them any time in the future after the school, by email.

Discussions and questions

Please, feel free to ask questions and contribute to the discussion points.
There is so much accumulated knowledge in the room, if the author
cannot answer a question, there will be someone who can. We are eager
to share our experiences!
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Outline

Intro to the anomalous magnetic moment

» Basic idea and status of experiment

» Theory prediction and tension
Dispersive approach and connection to lattice QCD

> a;’LO via dispersion relation and connection to lattice

» Derivation of the Time-Momentum representation method
Lattice calculation in practice

» Explicit contractions for the vector meson current

» Analysing lattice results and extrapolations

» Systematic uncertainties:
> lattice spacing
> pion mass
> finite volume
» Things yet unmentioned: Disconnected diagrams, more flavors, QED
effects, signal-to-noise deterioration, ...
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Introduction and the derivation of the lattice observable
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The magnetic moment ;i determines the shift of a particle’s energy
in the presence of a magnetic field B

V=—jiB

where the spin S of the particle contributes
e —
i— ()3
H g(Zm)

with electric charge e, particle mass m and Landé factor g.

The anomalous magnetic moment a = (g — 2)/2 accounts for radiative
corrections to the result found by Dirac g = 2.

Since a; < Mj—e .~ one is led to believe that precision studies of a; are a
b
good way to reveal new physics.

Particularly interesting is the case | = p
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To access a,, experimentally, note: The momentum vector of a muon
moving in a circle in a static magnetic field rotates with the cyclotron
angular frequency

We =

3[%,

However, the Larmor spin precession frequency is the same as for the
particle at rest
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To access a,, experimentally, note: The momentum vector of a muon
moving in a circle in a static magnetic field rotates with the cyclotron
angular frequency

However, the Larmor spin precession frequency is the same as for the
particle at rest

. eB
wL= g2m

insert a=(g-2)/2
- eB
= wp = (1 —+ au);

This means: Measuring &, = &) — w, = au(e/m)é one gets a direct
handle on a,!
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Experimental technique since CERN-II

2 w,
a,= g o —
2 B
Polarized Make a pion beam, then select highest energy
muons muons from parity violating n— p + v, decay
—
r—

Storage ring with ultra-precise dipole B-field. Allow

Precession in
muons to precess through as many g-2 cycles as

uniform B-field

possible.
S
Measure muon In parity violating decay p — € + ve +v,,,
spin direction the positron is preferentially emitted in the muon
vs time spin direction
—

Taken from a presentation at FCM2015
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New experiment: Fermilab E989

Aims at a 4x reduction in experimental uncertainty. Need better
theory!

(Higher muon intensity at FNAL, same storage ring)

Alternative proposal using ultra-cold muens allowing for a 66em storage device proposed at J-PARC (E34)

Taken from a presentation at LATTTICE2017
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To access a,, theoretically one needs to understand diagrams such as

a#:aQED+a +a

HAD

Note: The three left diagrams (or two contributions to a,,) can be
handled well using perturbation theory.
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Theory status for a, — summary

Contribution Value x100  Uncertainty x10™
QED (5 loops) 11 658 471.895 0.008
EW 15.4 0.1
HVP LO 692.3 4.2
HVP NLO -0.84 0.06
HVP NNLO 1.24 0.01
Hadronic light-by-light 10.5 2.6
Total SM prediction 11 659 1815 ,, 4.9
BNL E821 result 11 659 209.1 ** 6.3
FNAL E989,/J-PARC E34 goal ~ 1.6

rWe currently observe a ~ 3¢ tension| |

Taken from a presentation at LATTTICE2017
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To access a, theoretically one needs to understand diagrams such as

The diagram on the right, connected to a/’fd, the hadronic vacuum
polarization, is the least well determined from theory!

Can we accurately determine the hadronic contribution aZ"’d from first
principles?
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To find an approach from lattice QCD, let's take a closer look at how the
hadronic diagram can be computed in phenomenology. From the PDG:

one currently relies on a dispersion relation approach
to evaluate the lowest-order (i.e., @(a?)) hadronic vacuum
polarization contribution aH‘“l[L()] from corresponding cross
section measurements [15]

, 2 o 4 s
a1 (LO] = ?(%) /ds %R(")(s), (10)

m2

Here, K(s) is a known electromagnetic Kernel and s = g? = w? denotes
a given momentum transfer, while the R-ratio is

o(ete” — hadrons)
4ma(s)?/3s

R(s) =
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via optical theorem the R-ratio is directly related to the spectral function
of the e/m, or vector meson, current:

_ R(s)

1272

p(s)

One possibility to determine a"2? is therefore to numerically fold and

integrate the R-ratio data with the Kernel.
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The Kernel function K(s) depends on the mass of the lepton, indeed it

4.
enters as 1/mj;:

n

n 0
1(Q?) = 42 [11(Q?) - H(O)ﬁ
with the kernel given by’ @K HVP!
o 1-32(3)
Kg(s) = E tE Z{&)g : m ;

S-VERL s

()= - — —_—
(%) 25 ’ m?

,HLO _ (2)2100 dQ*K5(QY)I1(QY),

Aoy~ @ 7, BG)
H(Q)—?/n rl(sm.

16/67

Taken from arxiv:1107.4388.
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Home exercise:

In arxiv:1107.4388 a parametrisation of R(s) is given. Implement the
above equations in a small program to perform the integration
numerically and obtain your own value for azad. What regions of s is the
result particularly sensitive to? What is the impact of the strong m
dependence in the kernel? You can check this by entering e.g. the
electron, muon and tau masses.
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The key quantities needed to compute a/?? are the lepton mass and the
spectral function in terms of the R-ratio, as it enters through the
auxiliary definition I1(Q?).

had
n

This gives two handles to approach aﬁad from lattice QCD:
1. attempt to calculate R(s)
2. directly compute

o @ [T R()
Q%) = 3/0 ds(s+Q2)

Which option should we choose?

Notice, compared to the lattice spectral functions introduced before (e.g.
in Gert's or Olaf’s lectures) we have the relation:

”’“(;”) = p(V/s)

w
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This means there is a direct connection between the R-ratio and the
lattice vector meson correlation function via:

G(t, T=0,Nr =00) = / piat(w) - exp[—wt]
0

(see e.g. Gert's or Olaf's lectures)

Procedure:
» Calculate the correlation function G(t) on the lattice

» Reconstruct the spectral funciton pp:(w)

had

> Insert it into the dispersion relation and integrate to get a;
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This means there is a direct connection between the R-ratio and the
lattice vector meson correlation function via:

G(t, T=0,Nr =o0) = / piat(w) - exp[—wt]
0

(see e.g. Gert's or Olaf’s lectures)

Procedure:
» Calculate the correlation function G(t) on the lattice

» Reconstruct the spectral funciton pjar(w)

had

> Insert it into the dispersion relation and integrate to get a,;

But: The reconstruction of the spectral function is highly non-trivial and
subject to large systematic uncertainties!
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Better: Have a closer look at [1(Q2).

M(Q?) = N(Q?) — M(0) is the subtracted vacuum polarization function
that can be computed from the vacuum polarization tensor (see e.g.
Peskin-Schroeder):

Mul@) = (QuQ — 4, Q*)N(Q?)

the latter is directly related to the electromagnetic (vector meson) current

S = 280u0(x) — 38d(x) — 350 us(x) + -

Wl =

via

M(Q) = / d*xe' @ (1, (x) 4 (0))
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Better: Have a closer look at [1(Q2).
ﬁ(Q2) = M(Q?) — M(0) is the subtracted vacuum polarization function

that can be computed from the vacuum polarization tensor (see e.g.
Peskin-Schroeder):

Mu(Q) = (Qu@ — 6.0,Q*)N(Q?)
the latter is directly related to the electromagnetic (vector meson) current
2 _ 1- 1_
Ju(x) = gu(X)Vuu(X) - gd(x)yud(x) - gs(x)’Yﬂs(X) + .

via

M(Q) = / d*xe' @ (1, (x) 4, (0))

Hold on! We've seen (J,(x)J,(0)) before! This also gives the vector

meson correlator:
)= [ x4 (0)
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Setting (w.l.o.g) p=v =z and Q = (w, k = 0), we find G(t) and
M, (®@ = (w, k = 0)) are connected via Fourier transform:

G(t) = — / 02’7: et M, (w, k = 0)

exploiting the relation between the M(Q?) and M, (Q) we have

I_Izz(w7 E: 0) = _w2n(w2)

Therefore:

M(w?) = %/dte*’“ G(t)

The vacuum polarization function entering a/?? is directly related to
the lattice correlator by integration!
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Therefore: )
2y —iw
ﬂ(w)—ﬁ/dte £6(t)

had

The vacuum polarization function entering aj;

the lattice correlator by integration!

is directly related to

Procedure:
» Calculate the correlation function G(t) on the lattice

» Simplify it's relation to the HVP and integrate

had

> Insert the result into the dispersion relation and integrate to get a;

Advantage: G(t) is a raw lattice observable, it's systematics can be
tightly controlled and improved.

Alternative: Compute I1,,,(Q) directly on the lattice and derive M(Q?).

Both approaches are equivalent. But we need to subtract for 1(Q2) and
N, (Q) + N(Q?) diverges as Q% — 0.
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In class exercise

Let's more closely examine
Nw?) = 55 [ dee 61
P

1. expand this expression around w = 0 using

; _ 2x2 1. !
exp(—ixt) =% 1 — itx — TX ts 33 + % + ...

2. simplify the expansion by using that G(t) is even and real

3. why is it sufficient to expand two orders to obtain an accurate result
for 1(0)? Argue!

4. use the expanded and the unexpanded equations to form [1(w?)
5. simplify once more using the even and real properties of G(t)
6. how does [1(w?) behave for w — 0 and w — 00?
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With )
2y —iw
M(w )f—wz/dte tG(t)

we can expand around w ~ small for a more practical relation:
1
M(w? )“HO dtG(t) — —/dt t2G(t) +
w2

where we used that G(t) even and real, so
N(w?) = N(w?) — n(0)
lwt t2
/ dt G(t 2}

= 2/ dt G(t )[%2 - w] , G(t) even and real

w2

/ dt G(t 2 4sin? (wt/Q)}

2
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B 4sin?(wt/2)
2

fi(w?) = /OOO dt G(1)|[ ¢

w

This final expression can be inserted into the dispersion relation to obtain
ah?? from first principles after calculating the correlator G(t).

This approach is referred to as " TMR” (time momentum representation)
method.

Remark:

> The lattice extent in t is finite, the integral to co cannot be
rigorously performed.
= since G(t) ~ exp[—myt] decays faster than t? the large t
contribution is suppressed. However, enough of G(t) must be
accurately obtained to ensure a precise determination of the integral.
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03
04f
= | ,/\\ Need accurate G(H) up |
203 ;ﬂ’ \ to t[fm] around 2.5 ]
,EE - \, |
- 02) f \
— L |
L |'l|l| _
0.1 ?H |
|
/ . |
0 ———— R )
0 1 2 ’ ’ 5 6
t [fm]
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Home exercise:

Use the program you made from the first exercise and determine the
Euclidean correlator from the parametrisation of R(s). Can you

reproduce the value for azad you had before from using the TMR instead?
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There are other approaches to determine the crucial [1(Q?):

One is the aforementioned direct calculation from the HVP tensor. This
has the problem that the @? = 0 point is not directly calculable.

,H(()Z)ud’
Pade TLI]
il twisted boundary conditions s
periodic boundary conditions e
O0.11 p\h\ Time moment [Ty

s{, L
0.10 N
i, = 185 MeV B "m
0.09

(@ 44— Method cannot reach Q=0!
e
-/\K\m

0.11 “‘f“'
b\\a\}___
My = 268 MeV W"o\k‘
0.10

0 0.1 0.2 03 0.4 0.5
QGev?

Calculated by CLS-Mainz
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In this case the HVP M(Q?) is fit to Padé-Ansitze to fix M1(0). However,

since the Kernel in a/?? is very sensitive to the low @ region a

significant systematic is thereby introduced!

—TI(Q2)ud
Pade TTI]
il twisted boundary conditions e«
periodic boundary conditions e«
0.1 p}\.\ Time moment TT; s
S A
Q T
0.10 “M%
P
m, = 185 MeV M

0.09 ¢ e

ethod cannot reach Q=0!

£

4
<

0.11 “‘F“-
’o\a‘\;._\_
my = 268 MeV W\‘o\k‘
0.10
i SOV
0 0.1 02 03 0.4 0.5

Q*lGev?

Calculated by CLS-Mainz
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There are other approaches to determine the crucial ﬁ(Qz):

Another is the determination of moments M), M) .. of the expansion
of M(Q?) around Q? = 0. The TMR and time moments are directly
related, as the latter are calculated order by order in the same expansion.

—TI(Q%)nd
E : Padé TI.T
il twisted boundary conditions s
; periodic boundary conditions e«
ONL - Time moment IIy -
& By
‘11 D
0.10

k 4
my = 185 MoV M
0.00

Aot H +
noa-aerermimes Mmoments,;
the-first-is-the-result-at-Q=0!

0.11

m, = 268 MV ""\o\“\
0.10

Q2Gev?)
Calculated by CLS-Mainz
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Time moments are currently the most accurate method to determine
aZ""d. This is because only two to three moments in the expansion (same
as the one for the TMR) are required to fix the overall accuracy of azad
to ~ 1%.

_n(Qey
Tade 1L
twisted boundary conditions +e«
periodic boundary conditions re«
ONJ Time moment ITy v
0.10 \ \.}h |
5
my = 185 MeV M
0.09

N
12 9\:,\ Meothod-deot : "
\\ Method-determines-moment

the first-is-the result-at-Q=0!
0.11
%b\ﬁ"\‘
my = 268 MeV Wv\‘-\‘.\A
0.10
hns

0 0.1 0.2 0.3 0.4 0.5
Q2[Gev?|

Calculated by CLS-Mainz

Discussion

Can we understand intuitively why this method might be the most precise?
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In all approaches the main quantity to be calculated is the vector meson
correlator. How can this be done on the lattice?
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Practical lattice calculation
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We need to calculate the e/m current correlation function: (J,(x)J,.(0))

where
Ju6) = 2a0pen) = 3(6) — 350Ipes(e) + -

In the following we will restrict ourselves to only u and d quarks. (Note:
In a typical lattice calculation these will also be mass degenerate!)

Omitting also charge for the moment, we have:

(4u4(0) ) = (@00 3u(x)+d(x)7d(x)) (@(0)7,u(0) + d(0),,d(0)) )

To replace and contract the individual quarks with quark propagators to
form the correlation function we use Wick's theorem.

In other words, a string of creation and annihilation operators can be rewritten as the normal-ordered product of
the string, plus the normal-ordered product after all single contractions among operator pairs, plus all double
contractions, etc., plus all full contractions.

Applying the theorem to the above examples provides a much quicker method to arrive at the final expressions.

from wikipedia
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First set of contractions: Connect the quarks with antiquarks and vice
versa in the respectively opposite hadron

Meson sink Meson source
u(x)+d(x)7,.d(x)) ((0),1(0) + d(0)7,,d(0)) )

() 00)) = ( (a0,

Quark lines connect only in opposite hadron = connected diagram
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Second set of contractions: Connect the quarks with antiquarks and vice
versa in their own hadron

Meson sink Meson source
(40 u(0)) = ( (807 x)+ ()7 () ((0)c(0) + (0}, (0)) )
S —

Quark lines connect within the hadron = disconnected diagram
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Computing disconnected diagrams is orders of magnitude more difficult
(=costly) than computing connected ones.

Why?

To understand we look at how a quark propagator is calculated
numerically:

» The quark propagator is related to the fermion operator.
[D(X7 y)]ig’lro,ur[sq(y7 Z)]igllro,ur = [6)(:2]?:[;[/;

» here: D is the fermion operator, S the quark propagator we want
spin

color N€€ds to be specified

» The quark source [dy ]

> To obtain [Sy(y, x)]®,, the fermion operator needs to be inverted.

This amounts to inverting a Nz’ X Nt X Npin X Neojor, sparse,
complex Matrix.
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Computing disconnected diagrams is orders of magnitude more difficult
(=costly) than computing connected ones.

(D0 y) eotour[Sa (s 2)]eoiour = [x21z0rer

> Obtaining [Sy(y, x)]% ~amounts to inverting a

Nf x Nt x prin X Nfolor, sparse, complex Matrix.
» This can be efficiently done for propagators originating from a single

(or locally smeared) source point.

» This type of point-to-all propagator starts at a freely chosen origin
and goes to all points on the lattice.

» To compute a disconnected diagram we need an all-to-all
propagator, and therefore in principle need to solve for sources at all
points. Ergo it is much more expensive.

Result: We, and most lattice groups, will restrict ourselves to calculating
only the connected piece of the e/m correlator. This is a large systematic
and progress has only recently (2015/16) been made.
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Discussion
There are methods to handle all-to-all propagators, although we will not

cover them here.
Still: Can you think of any efficient ways to tackle the problem of

calculating an all-to-all propagator? Let's discuss!
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spin
color

Another look at point-to-all propagators [S4(y, x)]

> let's set the source at x=0 w.l.o.g and x=all spacetime points
> in fact S has two sets of color/spin-indices: one for the source and
one for the sink side
spin d,d’
[Sq(X7 0)]co’lor - [SQ(X7 0)]c,c’

» this means for every lattice site index the propagator is a 12 x 12
matrix of complex entries.

= numerically, performing Wick-contractions really means correctly
multiplying and summing the elements of 12 x 12 x Vols x complex
arrays
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The prescription how to multiply and sum is given by the

Wick-contractions we found before, but we need to insert our point-to-all
s,s’

propagators [Sq(y, x)|¢ o

(40 (0)) = ((Fx)mu(x) + d(x)7 () ) (a(0),u(0) + d(0),9(0) ) )
|| On the lattice typically: g =u=s, Sq=35,= 54

= (2 (a0’ (9) (@ O " a7 ()
— (2 S, LI Bl AT )

Recall: [F,L]dvdl = v, has only spin indices, the overlined propagator
denotes " backwards” propagation as opposed to the un-overlined
" forwards” .

> We need to "turn around” one of the point-to-all propagators that
we have, if we do not want to invert from all-to-point. We use:

[Sa0 OIS, = 15 [Sq(x, 0)]2
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The e/m correlator becomes:

d/ I

(500 4(0) = (21846, LTI [5,05, 0L o ]

= <2 . [Sq(X, O)]c:c‘/ m 75[5q(X7 0)]e:e/ 757:5 >

[54(x,0)] [84(x,0)]

=2. Z (Z (TrspinTrcolor[Sq(X,O)] : [Sq(X, 0)]))

Neonf

whereby Ngonr in principle denotes all possible gaugefield configurations.
Naturally, in a numerical calculation only a finite number of these is
available.
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MNumerically:

[Sa(x, 0)] = [Sq(x.0)] s

call
azl
ail
L adl

[5q(x.0)] =

alz
ai?
aiz
ad?

ali
aZ3
a3l
ads3

al4
ald
aid
add

(===

for example

(== =]

As noted: In lattice QCD the task is to properly invert, add, multiply and
sum the elements of large matrices.

afranc@yorku.ca
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In class exercise

d/ '

() 9u(0)) = (2 18406, LI T30, O] ]

= (2- [S4(x, O)1ZE 7 lSa(x, O)I% o )

[54(x,0)] [54(x,0)]

=2. Z (Z <Tl'spinTrcoIor[SQ(Xvo)] ’ [éq(X, 0)]))

Neonf

In the interpolating operator, i.e. current, for a pion correlator the gamma
matrix v, is replaced with v5. What changes in the overall calculation?
How can be most efficiently calculate a pion correlator on the lattice?
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Home exercise

A small free propagator is provided in the contraction package located at
https://github.com/RJHudspith/Contractual_0Obligations. It is
open source, so you may download and compile it. Contracting the
propagator provided you will obtain a free lattice meson correlator. It is
the numerical analog to the calculation in Gert's lecture.
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https://github.com/RJHudspith/Contractual_Obligations

< J.(x)J.(0) > =2 Z (Z (TrspinTrcolor[gq(X,o)] : [Sq(X,O)]))

Neonf

result obtained per propagator inversion

1.0e-01 .
. a3G(t)
1.0e-02 - 4
-
1.0e-03 - "'* 1
1.0e-04 Data on each config.

!!i
1.0e-05 - !
%Ilm ! i
1.0e-06 i
i
1.0e-07 - g I|! ! l‘i‘
f $++ T g 38t

1.0e-08 - +++ e §+¢+ ** Iﬁ*
+ +
1.0e-09 - A o e
+
1.0e-10 - + . ]
m;=185, 643 x 128, conn., Neon=400 t/a

1.0e-11 ! | ! ‘ ‘

0 10 20 30 40 50 60
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(4:6)4.(0))

1.0e-01 .
a3G(t)
1.0e-02 *
-
1.06-03 —
1.0e-04 .'.‘ Data on each config.  +
'!i <y 1w
1.06-05
£y
1.06-06
1.0e-07 - +
1.0e-08 _
© + ¥ ++ + #++¢ k4 $ +$+
+ + +
1.0e-09 - ot
+ +
1.0e-10 - . ]
m;=185, 643 x 128, conf., Neo =400 t/a
1.0e-11 ! | ‘
0 10 20 30 40 50 60

This is the data for G(t) that we need to determine aﬁ""d. Even after
taking the gauge average the result is still quite noisy.
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Back to calculating a,
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> We have formulated a direct link between G(t) and 11(Q?)

/ dt G(t 2 4sin? (wt/2)}

2

> insert this into the dispersion relation to find a//*©
2 > 4sin?(Qt/2
afito = (£) / dQ*Ke(Q?, m) / dt G(1) [¢2 - 20 (/ )}
m 0 0 Q
> Define:

4sin2(Qt/2)}

K(t,m,) = 47r2/0 dQ*Ke(Q?, ;) [t2 — >

™

o= (%) [ decRie.m,)

simple, concise relation of known functions and the lattice G(t)
to get ai*[LO]
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Note: To carry on with our procedure we need to handle the integration
to oo.
Two options:

» Truncate the integral

» Extrapolate the correlator

Here we will follow the approach to extrapolate the correlator.

In a system where \/(Qm,,)2 + (2pim)2 > m,, the vector meson is stable

and the long time behavior of G(t) is governed by the exponentially
decaying p-particle ground state.

G(t>) = A, exp[—m,t]

» Fit to this Ansatz and extend G(t) in the integral relation for [1(Q2).

» This is related, but not the same as, the idea of vector meson
dominance (VMD).
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Figure 2: Data for the light quark contribution to the integrand f((a:g; my) G"(2), scaled in units of
the muon mass for ensembles G8 (top) and O7 (below). The coloured bands, which show the various
methods to constrain the long-distance behaviour, start at the respective value of 2§ as indicated by
the vertical lines.

Calculated by CLS-Mainz
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What if m, decays as in physics?
» In this case we need to take into account wmr-states

» For the calculation here that was only possible using a model.

» Here the known Gounaris-Sakurai model was used, where the width
and mass input parameters were fitted to the data

» Advantage: In this model also finite volume effects due to the
finiteness of the lattice box can be estimated

» Still: This is a significant systematic in the approach shown here!
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G(x0)K () /my
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Observations:
» Data much better behaved for larger m, (very typical behaviour)
» The whole peak can be described by data for m, = 270MeV
» For m, = 185MeV large fluctuation visible
> Large part of the peak needs to be fitted = systematics?
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Having looked at the integrand of
HLO _ (& N %
o = (9) /O dt G(t) R(t, m,)

what is the final result for agLO?

Note, it will depend on m,, a[fm] and m, L of the lattice calculation.

To determine aﬁLo at the physical point several extrapolations have to

be made, these are ...
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Having looked at the integrand of

aHLO / dt G(t) K(t, m,)

what is the final result for aHLO?

Note, it will depend on m;, a[fm] and m,. L of the lattice calculation.

To determine aHLO

be made, these are

at the physical point several extrapolations have to

» chiral limit m/at

— My
» continuum limit a — 0

» infinite volume limit m,L — oo
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m.[MeV] a[fm] meL  (ah[LO))

495  0.0755(9)(7) 6.0 278(04)
381 0.0755(9)(7) 4.7 342(06)
331 0.0755(9)(7) 4.0 355(14)
281 0.0755(9)(7) 5.0 407(13)
437 0.0658(7)(7) 4.7 314(04)
311 0.0658(7)(7) 5.0 395(11)
265  0.0658(7)(7) 4.2 481(18)
185  0.0658(7)(7) 4.0 521(07)
441 0.0486(4)(5) 5.2 323(05)
340 0.0486(4)(5) 4.0 383(04)
268 0.0486(4)(5) 4.2 436(07)
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m[MeV] alfm] myL (az"d[LO])zg"”
495 0.0755(9)(7) | (6.0 278(04)
381 | | 0.0755(9)(7) | | 4.7 342(06)
31| | 0.0755(9)(7) | | 4.0 355(14)
281 | | 0.0755(9)(7) | | 5.0 407(13)
437 | | 0.0658(7)(7) |1 4.7 314(04)
311 0.0658(7)(7) | | 5.0 395(11)
)
)
)
)
)

265 | | 0.0658(7)(7) || 4.2 481(18
185 | | 0.0658(7)(7) || 4.0 521(07

441 | [0.0486(4)(5) [ |52 323(05
340 | | 0.0486(4)(5) | | 4.0 383(04
268 | | 0.0486(4)(5) | | 4.2 436(07

s\ S

. 7 \
m down fo 185MeV
3 lattice spacings Multiple volumes

Data for all three extrapolations available - in principle
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In principle?

m-[MeV] a[fm] m.L (aff’d[LO])ﬁg"”
495 0.0755(9)(7) | (6.0 278(04)
381 | |0.0755(9)(7) | | 4.7 342(06)
331 0.0755(9)(7) | | 4.0 355(14)
281 0.0755(9)(7) | | 5.0 407(13)
437 0.0658(7)(7) | | 4.7 314(04)
311 0.0658(7)(7) | | 5.0 395(11)
265 | | 0.0658(7)(7) || 4.2 481(18)
185 0.0658(7)(7) | | 4.0 521(07)
441 0.0486(4)(5) || 5.2 323(05)
340 0.0486(4)(5) | | 4.0 383(04)
268 | | 0.0486(4)(5) || 4.2 436(07)

. J \.
m down to 185MeV
3 lattice spacings Multiple volumes

» Only few volumes, close together (must rely on GS model for good
extrapolation!)

» my(a) don't match up
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» Have to perform a combined chiral-continuum(-volume)
extrapolation

» But: A rigorous form for the extrapolation is not known!
» A number of plausible extrapolations have to be performed,.e.g
[1705.01775]
Fit A: o1 + agmfr + 0[37’)’1,121_ In m?r + aua,
Fit B:  B1 + fam2 + Bsmy + Bua,
Fit C: Y1 4 YamZ + 3a,
Fit D: 01 + daa,

Discussion
What are the individual terms, can you guess? Let's discuss!
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Fit A: a1 + agmfr + a;;m?r In m?r + aqa,
Fit B: 1 + Bom?2 + Bami + Bya,

Fit C: 1 4 Yam2 + y3a,

Fit D: 01 + dqa,

» Fit A:
» Assume O(a) lattice spacing effects
» Assume leading chiral correction in m>
» Include possible chiral logarithm m2 In m2
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Fit A: a1 + agm?r + a;;m,zr In mfr + aaa,
Fit B: 1+ fam? + Bamt + Baa,

Fit C: 1 4+ Yam?2 + y3a,

Fit D: 01 + 02a,

» Fit B:

> Assume O(a) lattice spacing effects
» Assume leading chiral correction in m2
» Assume correction in m2
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Fit A:
Fit B:
Fit C:
Fit D:

] + ozgmjzT + oz;;m?r In m?r + wua,
Bi + Bamz + Bymr + Paa,

M + Yemi + vsa,

01 + 02a,

» Fit C:

> Assume O(a) lattice spacing effects

> Include only leading chiral correction in m;

» Fit D:

2

> Assume only O(a) lattice spacing effects
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TMR light strange charm

Fit ansatz A B A B, C C,D
Cuts in m, no cuts
and a cut1
cut 2 cut 2 cut 2
cuts 1 and 2 cuts 1 and 2 cuts 1 and 2
IR regime single exponential® | single exponential single exponential
Gounaris-Sakurai
Current Z(mua) Z(ms) Z\(,m")
renormalization v v Zyv(1+ byam)

*eut 1: my < 400 MeV
feut 2: a < 0.07 fm
t single exponential is not used as a variation with the GS model including the FV correction

Work of CLS-Mainz,[1705.01775]

Discussion
Do you see the reasoning behind choosing the different fits? Let's discuss
the procedure.
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Figure 3: Examples of chiral and continuum extrapolations of the light, strange and charm quark
contributions to (L}j"" for the hybrid (above) and TMR (below) methods. Yellow bands correspond to
the chiral behaviour in the continuum limit, while the dark red and blue curves represent the pion
mass dependence at 3 = 5.5 and 5.3. The physical value of the pion mass is indicated by the vertical
lines.

» Procedure works well for strange and charm quarks
Light quarks very difficult, yet still very constrained and significant

> Typical feature: The extrapolated error is much larger than that of
the individual points!

» Cross check: Repeat analysis using one or more of the other
approaches other than TMR.
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Figure 3: Examples of chiral and continuum extrapolations of the light, strange and charm quark
contributions to ah"p for the hybrid (above) and TMR (below) methods. Yellow bands correspond to
the chiral behaviour in the continuum limit, while the dark red and blue curves represent the pion
mass dependence at § = 5.5 and 5.3. The physical value of the pion mass is indicated by the vertical
lines.

» Hybrid of time-moments for M(0) and the HVP for M(Q? > 0)

» Results are consistent
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Final results:

—_— Hybrid

. — TMR

500 550 600 650 700
Tvpys
(@) ——. Hybrid
—e TMR
45 50 55 60 65
™
(@) —_— Hybrid
e TMR

11 12 13 14 15 16 17 18 19 20

abvp
o —_— Hybrid
——y @ ||| TMR
550 600 650 700 750

Figure 4: Comparison of results for the different flavour contributions to u,h"“ in units of 107°. Open
circles denote the results based on the finite-volume corrected estimates of the light quark contribution.
The yellow vertical band denotes the result obtained from dispersion theory [3].

‘Adding the contributions from the light, strange and charm quarks we arrive at

alt'P = (654 = 3210t £ 17 syst £ 10gcate £ 7rv T4 disc) - 10720, (37
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Final summary
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What have we learned? Conclusions?
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What have we learned? Conclusions?
> Getting G(t) accurately is difficult
» Controlling the extrapolations is not trivial

» Typically not all the values m, a[fm], m;L one would like are
available

» Typically not all effects can be included
Effects on final result?
> al?¥[LO] is "truncated”. Here it is

had LO conn,disc=guessed < co, m/‘”>m
( [ ])ud s=quench,c=quench :

» In other calculations different "truncations”.

» The error budget after extrapolation is large.
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had
"

» Obtaining precision that is competitive with respect to experiment is
the stated goal, but difficult to achieve.

» Calculating a??[LO] from ab initio is a pressing issue.

» In detail we have gone through a typical lattice calculation of
a?[LO] and saw the problems or issues arise.

» Many effects are still not properly accounted for, e.g. disconnected
diagrams and QED effects.

» Innovations are necessary and many new ideas are being tested. But
new approaches also have new systematics, hidden and visible.

» The TMR is not the best approach, indeed it is equivalent to the
others. Still it shows the problems faced clearly. It reminds us:

Free lunch theorem: There is no free lunch.
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