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A practical introduction
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Disclaimer

The material covered in this lecture is not entirely original, it has
been previously shown and has been compiled here by the author for
pedagogical presentation. As such figures and slides may have been
copied from other sources.
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Exercises
A number of home and in class exercises are strewn across the lectures.
These are purely voluntary. Solutions in general will not be given.
However, we can discuss the solution to the exercises outside of class, or
if you do them any time in the future after the school, by email.

Discussions and questions

Please, feel free to ask questions and contribute to the discussion points.
There is so much accumulated knowledge in the room, if the author
cannot answer a question, there will be someone who can. We are eager
to share our experiences!
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Outline

Intro to the anomalous magnetic moment

I Basic idea and status of experiment

I Theory prediction and tension

Dispersive approach and connection to lattice QCD

I aHLOµ via dispersion relation and connection to lattice

I Derivation of the Time-Momentum representation method

Lattice calculation in practice

I Explicit contractions for the vector meson current

I Analysing lattice results and extrapolations

I Systematic uncertainties:
I lattice spacing
I pion mass
I finite volume

I Things yet unmentioned: Disconnected diagrams, more flavors, QED
effects, signal-to-noise deterioration, ...
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Introduction and the derivation of the lattice observable
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The magnetic moment ~µ determines the shift of a particle’s energy
in the presence of a magnetic field ~B

V = −~µ · ~B

where the spin ~S of the particle contributes

~µ = g
( e

2m

)
~S

with electric charge e, particle mass m and Landé factor g .

The anomalous magnetic moment a = (g − 2)/2 accounts for radiative
corrections to the result found by Dirac g = 2.

Since al ∝ ml=e,µ,τ one is led to believe that precision studies of al are a
good way to reveal new physics.

Particularly interesting is the case l = µ
,
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To access aµ experimentally, note: The momentum vector of a muon
moving in a circle in a static magnetic field rotates with the cyclotron
angular frequency

~ωc =
e ~B

m

However, the Larmor spin precession frequency is the same as for the
particle at rest

~ωL = g
e ~B

2m
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To access aµ experimentally, note: The momentum vector of a muon
moving in a circle in a static magnetic field rotates with the cyclotron
angular frequency

~ωc =
e ~B

m

However, the Larmor spin precession frequency is the same as for the
particle at rest

~ωL = g
e ~B

2m

insert a=(g-2)/2

⇒ ~ωL = (1 + aµ)
e ~B

m

This means: Measuring ~ωa = ~ωL − ωc = aµ(e/m)~B one gets a direct
handle on aµ!
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Taken from a presentation at FCM2015 ,
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Taken from a presentation at LATTTICE2017
,
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To access aµ theoretically one needs to understand diagrams such as

aµ = aQED
µ + aEWµ + aHADµ

Note: The three left diagrams (or two contributions to aµ) can be
handled well using perturbation theory.
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Taken from a presentation at LATTTICE2017 ,
afranc@yorku.ca 12/67



To access aµ theoretically one needs to understand diagrams such as

The diagram on the right, connected to ahadµ , the hadronic vacuum
polarization, is the least well determined from theory!

Can we accurately determine the hadronic contribution ahadµ from first
principles?
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To find an approach from lattice QCD, let’s take a closer look at how the
hadronic diagram can be computed in phenomenology. From the PDG:

Here, K (s) is a known electromagnetic Kernel and s = q2 = ω2 denotes
a given momentum transfer, while the R-ratio is

R(s) =
σ(e+e− → hadrons)

4πα(s)2/3s
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via optical theorem the R-ratio is directly related to the spectral function
of the e/m, or vector meson, current:

ρ(s) =
R(s)

12π2

One possibility to determine ahadµ is therefore to numerically fold and
integrate the R-ratio data with the Kernel.
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The Kernel function K (s) depends on the mass of the lepton, indeed it
enters as 1/m4

µ:

Taken from arxiv:1107.4388. ,
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Home exercise:

In arxiv:1107.4388 a parametrisation of R(s) is given. Implement the
above equations in a small program to perform the integration
numerically and obtain your own value for ahadµ . What regions of s is the
result particularly sensitive to? What is the impact of the strong ml

dependence in the kernel? You can check this by entering e.g. the
electron, muon and tau masses.
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The key quantities needed to compute ahadµ are the lepton mass and the
spectral function in terms of the R-ratio, as it enters through the
auxiliary definition Π̂(Q2).

This gives two handles to approach ahadµ from lattice QCD:

1. attempt to calculate R(s)

2. directly compute

Π̂(Q2) =
Q2

3

∫ ∞
0

ds
R(s)

s(s + Q2)

Which option should we choose?

Notice, compared to the lattice spectral functions introduced before (e.g.
in Gert’s or Olaf’s lectures) we have the relation:

ρlat(ω)

ω2
= ρ(
√
s)
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This means there is a direct connection between the R-ratio and the
lattice vector meson correlation function via:

G (t,T = 0,NT =∞) =

∫ ∞
0

ρlat(ω) · exp[−ωt]

(see e.g. Gert’s or Olaf’s lectures)

Procedure:

I Calculate the correlation function G (t) on the lattice

I Reconstruct the spectral funciton ρlat(ω)

I Insert it into the dispersion relation and integrate to get ahadµ

,
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This means there is a direct connection between the R-ratio and the
lattice vector meson correlation function via:

G (t,T = 0,NT =∞) =

∫ ∞
0

ρlat(ω) · exp[−ωt]

(see e.g. Gert’s or Olaf’s lectures)

Procedure:

I Calculate the correlation function G (t) on the lattice

I Reconstruct the spectral funciton ρlat(ω)

I Insert it into the dispersion relation and integrate to get ahadµ

But: The reconstruction of the spectral function is highly non-trivial and
subject to large systematic uncertainties!
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Better: Have a closer look at Π̂(Q2).

Π̂(Q2) = Π(Q2)− Π(0) is the subtracted vacuum polarization function
that can be computed from the vacuum polarization tensor (see e.g.
Peskin-Schroeder):

Πµν(Q) =
(
QµQν − δµνQ2

)
Π(Q2)

the latter is directly related to the electromagnetic (vector meson) current

Jµ(x) =
2

3
ū(x)γµu(x)− 1

3
d̄(x)γµd(x)− 1

3
s̄(x)γµs(x) + ...

via

Πµν(Q) =

∫
d4xe iQ·x〈Jµ(x)Jν(0)〉
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Better: Have a closer look at Π̂(Q2).

Π̂(Q2) = Π(Q2)− Π(0) is the subtracted vacuum polarization function
that can be computed from the vacuum polarization tensor (see e.g.
Peskin-Schroeder):

Πµν(Q) =
(
QµQν − δµνQ2

)
Π(Q2)

the latter is directly related to the electromagnetic (vector meson) current

Jµ(x) =
2

3
ū(x)γµu(x)− 1

3
d̄(x)γµd(x)− 1

3
s̄(x)γµs(x) + ...

via

Πµν(Q) =

∫
d4xe iQ·x〈Jµ(x)Jν(0)〉

Hold on! We’ve seen 〈Jµ(x)Jν(0)〉 before! This also gives the vector
meson correlator:

G (t) =

∫
d3x〈Jµ(x)Jν(0)〉
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Setting (w.l.o.g) µ = ν = z and Q = (ω, ~k = 0), we find G (t) and

Πzz(Q = (ω, ~k = 0)) are connected via Fourier transform:

G (t) = −
∫

dω

2π
e iωt Πzz(ω, ~k = 0)

exploiting the relation between the Π(Q2) and Πµν(Q) we have

Πzz(ω, ~k = 0) = −ω2Π(ω2)

Therefore:

Π(ω2) =
1

ω2

∫
dt e−iωt G (t)

The vacuum polarization function entering ahadµ is directly related to
the lattice correlator by integration!
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Therefore:

Π(ω2) =
1

ω2

∫
dt e−iωt G (t)

The vacuum polarization function entering ahadµ is directly related to
the lattice correlator by integration!

Procedure:

I Calculate the correlation function G (t) on the lattice

I Simplify it’s relation to the HVP and integrate

I Insert the result into the dispersion relation and integrate to get ahadµ

Advantage: G (t) is a raw lattice observable, it’s systematics can be
tightly controlled and improved.

Alternative: Compute Πµν(Q) directly on the lattice and derive Π(Q2).

Both approaches are equivalent. But we need to subtract for Π̂(Q2) and
Πµν(Q)← Π(Q2) diverges as Q2 → 0.
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In class exercise
Let’s more closely examine

Π(ω2) =
1

ω2

∫
dt e−iωt G (t)

1. expand this expression around ω = 0 using

exp(−ixt)
x→0
= 1− itx − t2x2

2
+

1

6
it3x3 +

t4x4

24
+ ...

2. simplify the expansion by using that G (t) is even and real

3. why is it sufficient to expand two orders to obtain an accurate result
for Π(0)? Argue!

4. use the expanded and the unexpanded equations to form Π̂(ω2)

5. simplify once more using the even and real properties of G (t)

6. how does Π̂(ω2) behave for ω → 0 and ω →∞?
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With

Π(ω2) =
1

ω2

∫
dt e−iωt G (t)

we can expand around ω ∼ small for a more practical relation:

Π(ω2)
ω→0
=

1

ω2

∫
dtG (t)− 1

2

∫
dt t2 G (t) + ...

where we used that G(t) even and real, so

Π̂(ω2) = Π(ω2)− Π(0)

=

∫
dt G (t)

[e iωt − 1

ω2
+

t2

2

]
= 2

∫ ∞
0

dt G (t)
[ t2

2
− 1− cos(ωt)

ω2

]
, G(t) even and real

=

∫ ∞
0

dt G (t)
[
t2 − 4 sin2(ωt/2)

ω2

]
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Π̂(ω2) =

∫ ∞
0

dt G (t)
[
t2 − 4 sin2(ωt/2)

ω2

]

This final expression can be inserted into the dispersion relation to obtain
ahadµ from first principles after calculating the correlator G(t).
This approach is referred to as ”TMR”(time momentum representation)
method.

Remark:

I The lattice extent in t is finite, the integral to ∞ cannot be
rigorously performed.
⇒ since G (t) ∼ exp[−mV t] decays faster than t2 the large t
contribution is suppressed. However, enough of G (t) must be
accurately obtained to ensure a precise determination of the integral.
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Home exercise:
Use the program you made from the first exercise and determine the
Euclidean correlator from the parametrisation of R(s). Can you
reproduce the value for ahadµ you had before from using the TMR instead?
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There are other approaches to determine the crucial Π̂(Q2):

One is the aforementioned direct calculation from the HVP tensor. This
has the problem that the Q2 = 0 point is not directly calculable.

Calculated by CLS-Mainz
,
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In this case the HVP Π(Q2) is fit to Padé-Ansätze to fix Π(0). However,
since the Kernel in ahadµ is very sensitive to the low Q2 region a
significant systematic is thereby introduced!

Calculated by CLS-Mainz
,
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There are other approaches to determine the crucial Π̂(Q2):

Another is the determination of moments Π(0), Π(2), ... of the expansion
of Π(Q2) around Q2 = 0. The TMR and time moments are directly
related, as the latter are calculated order by order in the same expansion.

Calculated by CLS-Mainz ,
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Time moments are currently the most accurate method to determine
ahadµ . This is because only two to three moments in the expansion (same

as the one for the TMR) are required to fix the overall accuracy of ahadµ

to ∼ 1%.

Calculated by CLS-Mainz

Discussion
Can we understand intuitively why this method might be the most precise?
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In all approaches the main quantity to be calculated is the vector meson
correlator. How can this be done on the lattice?
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Practical lattice calculation
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We need to calculate the e/m current correlation function: 〈Jµ(x)Jµ(0)〉
where

Jµ(x) =
2

3
ū(x)γµu(x)− 1

3
d̄(x)γµd(x)− 1

3
s̄(x)γµs(x) + ...

In the following we will restrict ourselves to only u and d quarks. (Note:
In a typical lattice calculation these will also be mass degenerate!)

Omitting also charge for the moment, we have:〈
Jµ(x)Jµ(0)

〉
=
〈(

ū(x)γµu(x)+d̄(x)γµd(x)
)(

ū(0)γµu(0) + d̄(0)γµd(0)
)〉

To replace and contract the individual quarks with quark propagators to
form the correlation function we use Wick’s theorem.

from wikipedia
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First set of contractions: Connect the quarks with antiquarks and vice
versa in the respectively opposite hadron
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Second set of contractions: Connect the quarks with antiquarks and vice
versa in their own hadron
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Computing disconnected diagrams is orders of magnitude more difficult
(=costly) than computing connected ones.

Why?

To understand we look at how a quark propagator is calculated
numerically:

I The quark propagator is related to the fermion operator.

[D(x , y)]spincolour [Sq(y , z)]spincolour = [δx,z ]spincolor

I here: D is the fermion operator, S the quark propagator we want

I The quark source [δx,z ]spincolor needs to be specified

I To obtain [Sq(y , x)]spincolour the fermion operator needs to be inverted.
This amounts to inverting a N3

L × NT × Nspin × Ncolor , sparse,
complex Matrix.
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Computing disconnected diagrams is orders of magnitude more difficult
(=costly) than computing connected ones.

[D(x , y)]spincolour [Sq(y , z)]spincolour = [δx,z ]spincolor

I Obtaining [Sq(y , x)]spincolour amounts to inverting a
N3

L × NT × N2
spin × N2

color , sparse, complex Matrix.

I This can be efficiently done for propagators originating from a single
(or locally smeared) source point.

I This type of point-to-all propagator starts at a freely chosen origin
and goes to all points on the lattice.

I To compute a disconnected diagram we need an all-to-all
propagator, and therefore in principle need to solve for sources at all
points. Ergo it is much more expensive.

Result: We, and most lattice groups, will restrict ourselves to calculating
only the connected piece of the e/m correlator. This is a large systematic
and progress has only recently (2015/16) been made.
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Discussion
There are methods to handle all-to-all propagators, although we will not
cover them here.
Still: Can you think of any efficient ways to tackle the problem of
calculating an all-to-all propagator? Let’s discuss!
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Another look at point-to-all propagators [Sq(y , x)]
spin
color

I let’s set the source at x=0 w.l.o.g and x=all spacetime points

I in fact S has two sets of color/spin-indices: one for the source and
one for the sink side

[Sq(x , 0)]spincolor = [Sq(x , 0)]d,d
′

c,c′

I this means for every lattice site index the propagator is a 12× 12
matrix of complex entries.

⇒ numerically, performing Wick-contractions really means correctly
multiplying and summing the elements of 12× 12× Vol4 × complex
arrays
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The prescription how to multiply and sum is given by the
Wick-contractions we found before, but we need to insert our point-to-all

propagators [Sq(y , x)]s,s
′

c,c′ :〈
Jµ(x)Jµ(0)

〉
=
〈(

ū(x)γµu(x) + d̄(x)γµd(x)
)(

ū(0)γµu(0) + d̄(0)γµd(0)
)〉

‖ On the lattice typically: q = u = s , Sq = Su = Sd

=
〈

2 ·
(
q̄d(x)γd,fµ qf (x)

)(
q̄d′(0)γd

′,f ′
µ qf ′(0)

)〉
=
〈

2 · [Sq(x , 0)]d,f
′

c,c′ [Γµ]d,f [Sq(x , 0)]
f ,d′

e,e′ [Γµ]
d′,f ′

〉
Recall: [Γµ]d,d

′
= γµ has only spin indices, the overlined propagator

denotes ”backwards” propagation as opposed to the un-overlined
”forwards”.

I We need to ”turn around” one of the point-to-all propagators that
we have, if we do not want to invert from all-to-point. We use:

[Sq(x , 0)]
d,d′

c,c′ ≡ γ5 [Sq(x , 0)]d,d
′

c,c′ γ
†
5

,
afranc@yorku.ca 42/67



The e/m correlator becomes:〈
Jµ(x)Jµ(0)

〉
=
〈

2 · [Sq(x , 0)]d,f
′

c,c′ [Γµ]d,f [Sq(x , 0)]
f ,d′

e,e′ [Γµ]
d′,f ′

=
〈

2 · [Sq(x , 0)]d,f
′

c,c′ γµ︸ ︷︷ ︸
[S̃q(x,0)]

γ5[Sq(x , 0)]f ,d
′

e,e′ γ
†
5γ
†
µ︸ ︷︷ ︸

[S̃q(x,0)]

〉

= 2 ·
∑
Nconf

(∑
x

(
TrspinTrcolor[S̃q(x,0)] · [S̃q(x,0)]

))
whereby Nconf in principle denotes all possible gaugefield configurations.
Naturally, in a numerical calculation only a finite number of these is
available.
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As noted: In lattice QCD the task is to properly invert, add, multiply and
sum the elements of large matrices.
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In class exercise

〈
Jµ(x)Jµ(0)

〉
=
〈

2 · [Sq(x , 0)]d,f
′

c,c′ [Γµ]d,f [Sq(x , 0)]
f ,d′

e,e′ [Γµ]
d′,f ′

=
〈

2 · [Sq(x , 0)]d,f
′

c,c′ γµ︸ ︷︷ ︸
[S̃q(x,0)]

γ5[Sq(x , 0)]f ,d
′

e,e′ γ
†
5γ
†
µ︸ ︷︷ ︸

[S̃q(x,0)]

〉

= 2 ·
∑
Nconf

(∑
x

(
TrspinTrcolor[S̃q(x,0)] · [S̃q(x,0)]

))
In the interpolating operator, i.e. current, for a pion correlator the gamma
matrix γµ is replaced with γ5. What changes in the overall calculation?
How can be most efficiently calculate a pion correlator on the lattice?
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Home exercise
A small free propagator is provided in the contraction package located at
https://github.com/RJHudspith/Contractual_Obligations. It is
open source, so you may download and compile it. Contracting the
propagator provided you will obtain a free lattice meson correlator. It is
the numerical analog to the calculation in Gert’s lecture.

,
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〈
Jµ(x)Jµ(0)

〉
= 2 ·

∑
Nconf

(∑
x

(
TrspinTrcolor[S̃q(x,0)] · [S̃q(x,0)]

))
︸ ︷︷ ︸

result obtained per propagator inversion
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〈
Jµ(x)Jµ(0)

〉

This is the data for G (t) that we need to determine ahadµ . Even after
taking the gauge average the result is still quite noisy.
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Back to calculating aµ
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I We have formulated a direct link between G (t) and Π̂(Q2)

Π̂(ω2) =

∫ ∞
0

dt G (t)
[
t2 − 4 sin2(ωt/2)

ω2

]
I insert this into the dispersion relation to find aHLOµ

aHLOµ =
(α
π

)2 ∫ ∞
0

dQ2KE (Q2,m2
µ)

∫ ∞
0

dt G (t)
[
t2− 4 sin2(Qt/2)

Q2

]
I Define:

K̃ (t,mµ) = 4π2

∫ ∞
0

dQ2KE (Q2,m2
µ)
[
t2 − 4 sin2(Qt/2)

Q2

]
I

aHLOµ =
(α
π

)2 ∫ ∞
0

dt G (t) K̃ (t,mµ)

simple, concise relation of known functions and the lattice G (t)
to get ahadµ [LO]
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Note: To carry on with our procedure we need to handle the integration
to ∞.

Two options:

I Truncate the integral

I Extrapolate the correlator

Here we will follow the approach to extrapolate the correlator.

In a system where
√

(2mπ)2 + (2~pmin
lat )2 > mρ the vector meson is stable

and the long time behavior of G (t) is governed by the exponentially
decaying ρ-particle ground state.

G (t �) = Aρ exp[−mρt]

I Fit to this Ansatz and extend G (t) in the integral relation for Π̂(Q2).

I This is related, but not the same as, the idea of vector meson
dominance (VMD).
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Calculated by CLS-Mainz ,
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What if mρ decays as in physics?

I In this case we need to take into account ππ-states

I For the calculation here that was only possible using a model.
I Here the known Gounaris-Sakurai model was used, where the width

and mass input parameters were fitted to the data
I Advantage: In this model also finite volume effects due to the

finiteness of the lattice box can be estimated

I Still: This is a significant systematic in the approach shown here!
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Observations:

I Data much better behaved for larger mπ (very typical behaviour)

I The whole peak can be described by data for mπ = 270MeV

I For mπ = 185MeV large fluctuation visible

I Large part of the peak needs to be fitted ⇒ systematics?
,
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Having looked at the integrand of

aHLOµ =
(α
π

)2 ∫ ∞
0

dt G (t) K̃ (t,mµ)

what is the final result for aHLOµ ?

Note, it will depend on mπ, a[fm] and mπL of the lattice calculation.

To determine aHLOµ at the physical point several extrapolations have to
be made, these are ...
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Having looked at the integrand of

aHLOµ =
(α
π

)2 ∫ ∞
0

dt G (t) K̃ (t,mµ)

what is the final result for aHLOµ ?

Note, it will depend on mπ, a[fm] and mπL of the lattice calculation.

To determine aHLOµ at the physical point several extrapolations have to
be made, these are

I chiral limit mlat
π → mπ

I continuum limit a→ 0

I infinite volume limit mπL→∞
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mπ[MeV] a[fm] mπL (ahadµ [LO])connud

495 0.0755(9)(7) 6.0 278(04)
381 0.0755(9)(7) 4.7 342(06)
331 0.0755(9)(7) 4.0 355(14)
281 0.0755(9)(7) 5.0 407(13)
437 0.0658(7)(7) 4.7 314(04)
311 0.0658(7)(7) 5.0 395(11)
265 0.0658(7)(7) 4.2 481(18)
185 0.0658(7)(7) 4.0 521(07)
441 0.0486(4)(5) 5.2 323(05)
340 0.0486(4)(5) 4.0 383(04)
268 0.0486(4)(5) 4.2 436(07)
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Data for all three extrapolations available - in principle
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In principle?

I Only few volumes, close together (must rely on GS model for good
extrapolation!)

I mπ(a) don’t match up
,
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I Have to perform a combined chiral-continuum(-volume)
extrapolation

I But: A rigorous form for the extrapolation is not known!

I A number of plausible extrapolations have to be performed,.e.g
[1705.01775]

Discussion
What are the individual terms, can you guess? Let’s discuss!

,
afranc@yorku.ca 59/67



I Fit A:
I Assume O(a) lattice spacing effects
I Assume leading chiral correction in m2

π

I Include possible chiral logarithm m2
π lnm2

π
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I Fit B:
I Assume O(a) lattice spacing effects
I Assume leading chiral correction in m2

π

I Assume correction in m4
π
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I Fit C:
I Assume O(a) lattice spacing effects
I Include only leading chiral correction in m2

π

I Fit D:
I Assume only O(a) lattice spacing effects
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Work of CLS-Mainz,[1705.01775]

Discussion
Do you see the reasoning behind choosing the different fits? Let’s discuss
the procedure.
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I Procedure works well for strange and charm quarks

I Light quarks very difficult, yet still very constrained and significant

I Typical feature: The extrapolated error is much larger than that of
the individual points!

I Cross check: Repeat analysis using one or more of the other
approaches other than TMR.
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I Hybrid of time-moments for Π(0) and the HVP for Π(Q2 > 0)

I Results are consistent
,
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Final results:
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Final summary
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What have we learned? Conclusions?
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What have we learned? Conclusions?

I Getting G (t) accurately is difficult

I Controlling the extrapolations is not trivial

I Typically not all the values mπ, a[fm], mπL one would like are
available

I Typically not all effects can be included

Effects on final result?

I ahadµ [LO] is ”truncated”. Here it is

(ahadµ [LO])
conn,disc=guessed,L�∞,mlat

π >mπ

ud,s=quench,c=quench .

I In other calculations different ”truncations”.

I The error budget after extrapolation is large.
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I Calculating ahadµ [LO] from ab initio is a pressing issue.

I Obtaining precision that is competitive with respect to experiment is
the stated goal, but difficult to achieve.

I In detail we have gone through a typical lattice calculation of
ahadµ [LO] and saw the problems or issues arise.

I Many effects are still not properly accounted for, e.g. disconnected
diagrams and QED effects.

I Innovations are necessary and many new ideas are being tested. But
new approaches also have new systematics, hidden and visible.

I The TMR is not the best approach, indeed it is equivalent to the
others. Still it shows the problems faced clearly. It reminds us:

Free lunch theorem: There is no free lunch.
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