# Chiral heat-vortical wave in cold Fermi liquid and the deformation of zero sound

David Frenklakh

August 24, 2017

The Helmholtz International Summer School "Hadron Structure, Hadronic Matter, and Lattice QCD"

- Anomalous transport effects
- Chiral waves
- Chiral kinetic theory formalism for Fermi liquid
- Results

#### • blah-blah

• • • • • • • •

3

• Anomalous transport effects should reveal themselves in heavy ion collisions

- Anomalous transport effects should reveal themselves in heavy ion collisions
- Namely, chiral waves should cause generation of quadrupole moment in quark-gluon plasma

## Anomalous transport effects

• Chiral magnetic effect

$$\mathbf{j}_V = \frac{\mu_A \mathbf{B}}{2\pi^2}$$

## Anomalous transport effects

• Chiral magnetic effect

$$\mathbf{j}_V = \frac{\mu_A \mathbf{B}}{2\pi^2}$$

• Chiral separation effect

$$\mathbf{j}_A = \frac{\mu_V \mathbf{B}}{2\pi^2}$$

#### Anomalous transport effects

• Chiral magnetic effect

$$\mathbf{j}_V = \frac{\mu_A \mathbf{B}}{2\pi^2}$$

• Chiral separation effect

$$\mathbf{j}_A = \frac{\mu_V \mathbf{B}}{2\pi^2}$$

• Chiral vortical effect

$$\mathbf{j}_A = \left[\frac{(\mu_V^2 + \mu_A^2)}{2\pi^2} + \frac{T^2}{6}\right] \mathbf{\Omega}$$
$$\mathbf{j}_V = \frac{\mu_V \mu_A}{\pi^2} \mathbf{\Omega}$$

• Chiral effects + axial and vector current conservation laws

- Chiral effects + axial and vector current conservation laws
- Chiral magnetic wave:

$$\mathbf{j}_{V/A} = rac{\mu_{A/V}\mathbf{B}}{2\pi^2}, \ \partial_t 
ho_{V/A} + \boldsymbol{\partial} \cdot \mathbf{j}_{V/A} = 0$$

- Chiral effects + axial and vector current conservation laws
- Chiral magnetic wave:

$$\mathbf{j}_{V/A} = rac{\mu_{A/V}\mathbf{B}}{2\pi^2}, \ \partial_t 
ho_{V/A} + oldsymbol{\partial} \cdot \mathbf{j}_{V/A} = 0$$

• Consider small fluctuations above neutral background ( $\mu_V = \mu_A = 0$ )  $\delta 
ho_{V/A} = \chi \delta \mu_{V/A}$ 

- Chiral effects + axial and vector current conservation laws
- Chiral magnetic wave:

$$\mathbf{j}_{V/A} = rac{\mu_{A/V}\mathbf{B}}{2\pi^2}, \ \partial_t 
ho_{V/A} + \boldsymbol{\partial} \cdot \mathbf{j}_{V/A} = 0$$

• Consider small fluctuations above neutral background ( $\mu_V = \mu_A = 0$ )

$$\delta\rho_{V\!/\!A} = \chi\delta\mu_{V\!/\!A}$$

$$\omega\chi\delta\mu_{V/A} + \frac{(\mathbf{k}\cdot\mathbf{B})\delta\mu_{A/V}}{2\pi^2} = 0$$

#### Dispersion relation

$$v_{CMW} = \frac{B}{2\pi^2 \chi}$$

David Frenklakh (ITEP)

## Chiral vortical wave

- $\bullet\,$  Chiral vortical effect is quadratic in chemical potentials  $\Rightarrow\,$
- We need finite vector charge density in the background

$$\mathbf{j}_A = \left[\frac{(\mu_V^2 + \mu_A^2)}{2\pi^2} + \frac{T^2}{6}\right] \mathbf{\Omega}$$
$$\mathbf{j}_V = \frac{\mu_V \mu_A}{\pi^2} \mathbf{\Omega}$$

## Chiral vortical wave

- $\bullet\,$  Chiral vortical effect is quadratic in chemical potentials  $\Rightarrow\,$
- We need finite vector charge density in the background

$$\mathbf{j}_A = \left[\frac{(\mu_V^2 + \mu_A^2)}{2\pi^2} + \frac{T^2}{6}\right] \mathbf{\Omega}$$
$$\mathbf{j}_V = \frac{\mu_V \mu_A}{\pi^2} \mathbf{\Omega}$$

$$\partial_t \rho_{V/A} + \boldsymbol{\partial} \cdot \mathbf{j}_{V/A} = 0$$

• Assume that temperature is kept constant

$$\delta\rho_{V/A} = \chi\delta\mu_{V/A}$$

## Chiral vortical wave

- Chiral vortical effect is quadratic in chemical potentials  $\Rightarrow$
- We need finite vector charge density in the background

$$\mathbf{j}_A = \left[\frac{(\mu_V^2 + \mu_A^2)}{2\pi^2} + \frac{T^2}{6}\right] \mathbf{\Omega}$$
$$\mathbf{j}_V = \frac{\mu_V \mu_A}{\pi^2} \mathbf{\Omega}$$

$$\partial_t \rho_{V/A} + \boldsymbol{\partial} \cdot \mathbf{j}_{V/A} = 0$$

• Assume that temperature is kept constant

$$\delta\rho_{V/A} = \chi\delta\mu_{V/A}$$

#### Dispersion relation

$$v_{CVW} = \frac{\mu_V \Omega}{2\pi^2 \chi}$$

David Frenklakh (ITEP)

• Anomalous energy transport due to rotation:

$$\mathbf{j}_E = \frac{\mu_A}{3} \left[ \frac{3\mu_V^2 + \mu_A^2}{\pi^2} + T^2 \right] \mathbf{\Omega}$$

• Anomalous energy transport due to rotation:

$$\mathbf{j}_E = \frac{\mu_A}{3} \left[ \frac{3\mu_V^2 + \mu_A^2}{\pi^2} + T^2 \right] \mathbf{\Omega}$$

• Energy conservation law:

$$\partial_t \epsilon + \boldsymbol{\partial} \cdot \mathbf{j}_E = 0$$

• Anomalous energy transport due to rotation:

$$\mathbf{j}_E = \frac{\mu_A}{3} \left[ \frac{3\mu_V^2 + \mu_A^2}{\pi^2} + T^2 \right] \mathbf{\Omega}$$

• Energy conservation law:

$$\partial_t \epsilon + \boldsymbol{\partial} \cdot \mathbf{j}_E = 0$$

• For small fluctuations of vector charge and energy density above equilibrium

$$\delta \rho_V = \chi \delta \mu_V + \alpha \delta T$$
$$\delta \epsilon = C \delta T + \gamma \delta \mu_V$$

#### Dispersion relation

$$v_{CHW} = \sqrt{\frac{T^3}{C\chi - \alpha\gamma}} \frac{\Omega}{3}$$

< AP

- Non-zero background charge density
- Temperature, vector and axial charges fluctuating

- Non-zero background charge density
- Temperature, vector and axial charges fluctuating

#### Dispersion relation

$$v_{CHVW} = \sqrt{\frac{\Omega^2 |9\mu_V^2(C - \alpha\mu_V) - 3\mu_V T \pi^2(\alpha T + \gamma - \chi\mu_V) + \pi^2 \chi T^3|}{9\pi^4 \chi |C\chi - \alpha\gamma|}}$$

• System of strongly interacting chiral particles

Image: Image:

æ

- System of strongly interacting chiral particles
- Not far from equilibrium is described in terms of quasiparticles

- System of strongly interacting chiral particles
- Not far from equilibrium is described in terms of quasiparticles
- The anomalous effects are captured by Berry connection in momentum space

$$\frac{\partial n_{R/L}}{\partial t} + \dot{\mathbf{x}}_{R/L} \cdot \frac{\partial n_{R/L}}{\partial \mathbf{x}} + \dot{\mathbf{p}}_{R/L} \cdot \frac{\partial n_{R/L}}{\partial \mathbf{p}} = C_{R/L}[n_R, n_L]$$

•  $n_{R/L}(t, \mathbf{x}, \mathbf{p})$  are right and left quasiparticles distribution functions •  $C_{R/L}$  are respective collision integrals

$$\sqrt{G_{R/L}}\dot{\mathbf{x}}_{R/L} = \mathbf{v}_{R/L} + 2\epsilon_{R/L}\mathbf{\Omega}(\mathbf{v}_{R/L} \cdot \mathbf{b}_{R/L}) + \boldsymbol{\mathcal{E}}_{R/L} \times \mathbf{b}_{R/L}$$
$$\sqrt{G_{R/L}}\dot{\mathbf{p}}_{R/L} = \boldsymbol{\mathcal{E}}_{R/L} + 2\epsilon_{R/L}\mathbf{v}_{R/L} \times \mathbf{\Omega} + (\boldsymbol{\mathcal{E}}_{R/L} \cdot \mathbf{\Omega})2\epsilon_{R/L}\mathbf{b}_{R/L}$$

• Here  $\epsilon_{R/L}$  are quasiparticles energy functionals,

• 
$$\mathbf{v}_{R/L} = \frac{\partial \epsilon_{R/L}}{\partial \mathbf{p}}$$
,  $\boldsymbol{\mathcal{E}}_{R/L} = -\frac{\partial \epsilon_{R/L}}{\partial \mathbf{x}}$   
•  $\mathbf{b}_{R/L} = \pm \frac{\hat{\mathbf{p}}}{2p^3}$  are Berry connections curvature in momentum space  $(p = |\mathbf{p}|)$   
•  $\sqrt{G_{R/L}} = 1 + 2\epsilon_{R/L}(\mathbf{b}_{R/L} \cdot \mathbf{\Omega})$  modify phase space volume

Image: Image:

3

• We are considering the small fluctuations above the equilibrium distribution functions:

$$n_{R/L} = n_{R/L}^0 + \delta n_{R/L} e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

where

$$n_{R/L}^0 = \frac{1}{e^{\beta(\epsilon^0 - \mu)} + 1}$$

• Here  $\beta = T^{-1}$  and we assume  $\mu \gg T$ 

• We are considering the small fluctuations above the equilibrium distribution functions:

$$n_{R/L} = n_{R/L}^0 + \delta n_{R/L} e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}$$

where

$$n_{R/L}^0 = \frac{1}{e^{\beta(\epsilon^0 - \mu)} + 1}$$

• Here  $\beta = T^{-1}$  and we assume  $\mu \gg T$ 

• Two regimes:  $\omega \ll \tau^{-1}$  (hydrodynamic regime)  $\omega \gg \tau^{-1}$  (collisionless regime). Here  $\tau$  is characteristic relaxation time of collision integral

#### Dispersion relation

$$\omega = \pm \frac{\mu(\mathbf{k} \cdot \mathbf{\Omega})}{2\pi^2 \chi} \sqrt{F_1 F_2} \left[ 1 + \frac{T^2 \pi^2}{6\mu^2 F_1} \left( 1 - 4A + 4A^2 \right) \right]$$

• 
$$A = \frac{\mu}{v_F p_F}$$

 $\bullet\ F_1$  and  $F_2$  are taken from linearised energy functionals

#### Non-modified implicit zero sound dispersion relation

$$\operatorname{arcotanh} s_0 = \frac{1}{s_0} \left( \frac{1}{2(F_S \pm F_A)} + 1 \right)$$

• Here  $s_0=\frac{\omega}{v_fk},\,F_S$  and  $F_A$  are taken from linearised energy functionals

#### Modification due to the chiral heat-vortical wave

$$\delta s = s - s_0 \approx \mp \frac{\omega^2 \mu^2}{p_F^4} \left( 1 - \frac{2\pi^2 T^2}{3v_F^2 p_F^2} \right) \cdot \frac{F_S L_2(s_0) + [L_1(s_0)^2 - 2L_0(s_0)L_2(s_0)](F_S^2 - F_A^2)]}{F_A[\operatorname{arcotanh} s_0 - \frac{s_0}{2((s_0)^2 - 1)}]}$$

$$L_0(s_0) = s_0 \operatorname{arcotanh} s_0 - 1$$
$$L_1(s_0) = 3s_0(s_0 \operatorname{arcotanh} s_0 - 1)$$
$$L_2(s_0) = 2s_0[-3s_0 + (3s_0^2 - 1) \operatorname{arcotanh} s_0]$$

э

17 / 18

• The result for velocity of chiral heat-vortical wave coincides with the one known from hydrodynamics

- The result for velocity of chiral heat-vortical wave coincides with the one known from hydrodynamics
- There turn out to be two branches of modified zero sound with the correction to velocity being quadratic in angular velocity

## THANK YOU FOR YOUR ATTENTION

- A 🖓

3