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Motivation
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Motivation

Anomalous transport effects should reveal themselves in heavy ion
collisions

Namely, chiral waves should cause generation of quadrupole moment
in quark-gluon plasma
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Anomalous transport effects

Chiral magnetic effect

jV =
µAB

2π2

Chiral separation effect

jA =
µV B

2π2

Chiral vortical effect

jA =

[
(µ2V + µ2A)

2π2
+
T 2

6

]
Ω

jV =
µV µA
π2

Ω
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Chiral magnetic wave

Chiral effects + axial and vector current conservation laws

Chiral magnetic wave:

jV/A =
µA/V B

2π2
,

∂tρV/A + ∂ · jV/A = 0

Consider small fluctuations above neutral background (µV = µA = 0)

δρV/A = χδµV/A

ωχδµV/A +
(k ·B)δµA/V

2π2
= 0

Dispersion relation

vCMW =
B

2π2χ
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Chiral vortical wave

Chiral vortical effect is quadratic in chemical potentials ⇒
We need finite vector charge density in the background

jA =

[
(µ2V + µ2A)

2π2
+
T 2

6

]
Ω

jV =
µV µA
π2

Ω

∂tρV/A + ∂ · jV/A = 0

Assume that temperature is kept constant

δρV/A = χδµV/A

Dispersion relation

vCVW =
µV Ω

2π2χ
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Chiral heat wave

Anomalous energy transport due to rotation:

jE =
µA
3

[
3µ2V + µ2A

π2
+ T 2

]
Ω

Energy conservation law:

∂tε+ ∂ · jE = 0

For small fluctuations of vector charge and energy density above
equilibrium

δρV = χδµV + αδT

δε = CδT + γδµV
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Chiral heat wave

Dispersion relation

vCHW =

√
T 3

Cχ− αγ
Ω

3
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Mixed chiral heat-vortical wave

Non-zero background charge density
Temperature, vector and axial charges fluctuating

Dispersion relation

vCHVW =

√
Ω2|9µ2V (C − αµV )− 3µV Tπ

2(αT + γ − χµV ) + π2χT 3|
9π4χ|Cχ− αγ|
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Berry Fermi liquid

System of strongly interacting chiral particles

Not far from equilibrium is described in terms of quasiparticles
The anomalous effects are captured by Berry connection in
momentum space
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Kinetic equation

∂nR/L

∂t
+ ẋR/L ·

∂nR/L

∂x
+ ṗR/L ·

∂nR/L

∂p
= CR/L[nR, nL]

nR/L(t,x,p) are right and left quasiparticles distribution functions
CR/L are respective collision integrals
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Equations of motion

√
GR/LẋR/L = vR/L + 2εR/LΩ(vR/L · bR/L) + ER/L × bR/L√

GR/LṗR/L = ER/L + 2εR/LvR/L ×Ω + (ER/L ·Ω)2εR/LbR/L

Here εR/L are quasiparticles energy functionals,

vR/L =
∂εR/L

∂p
, ER/L = −

∂εR/L

∂x

bR/L = ± p̂

2p3
are Berry connections curvature in momentum space

(p = |p|)√
GR/L = 1 + 2εR/L(bR/L ·Ω) modify phase space volume
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Collective excitations in kinetic theory formalism

We are considering the small fluctuations above the equilibrium
distribution functions:

nR/L = n0R/L + δnR/Le
i(k·x−ωt)

where
n0R/L =

1

eβ(ε0−µ) + 1

Here β = T−1 and we assume µ� T

Two regimes: ω � τ−1 (hydrodynamic regime) ω � τ−1 (collisionless
regime). Here τ is characteristic relaxation time of collision integral
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Hydrodynamic regime: chiral heat-vortical wave

Dispersion relation

ω = ±µ(k ·Ω)

2π2χ

√
F1F2

[
1 +

T 2π2

6µ2F1

(
1− 4A+ 4A2

)]
A =

µ

vF pF
F1 and F2 are taken from linearised energy functionals
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Collisionless regime: zero sound

Non-modified implicit zero sound dispersion relation

arcotanh s0 =
1

s0

(
1

2(FS ± FA)
+ 1

)
Here s0 =

ω

vfk
, FS and FA are taken from linearised energy

functionals
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Modified zero sound

Modification due to the chiral heat-vortical wave

δs = s− s0 ≈ ∓
ω2µ2

p4F

(
1− 2π2T 2

3v2F p
2
F

)
·

FSL2(s0) + [L1(s0)
2 − 2L0(s0)L2(s0)](F

2
S − F 2

A)]

FA[arcotanh s0 − s0
2((s0)2−1)

]

L0(s0) = s0 arcotanh s0 − 1

L1(s0) = 3s0(s0 arcotanh s0 − 1)

L2(s0) = 2s0[−3s0 + (3s20 − 1) arcotanh s0]
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Conclusion

The result for velocity of chiral heat-vortical wave coincides with the
one known from hydrodynamics

There turn out to be two branches of modified zero sound with the
correction to velocity being quadratic in angular velocity
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