Heavy hadrons spectra on lattice using NRQCD

Protick Mohanta
National Institute of Science Education and Research

DIAS - Helmholtz International Summer School -2017, JINR, Dubna
(1) Introduction
(2) NRQCD Action

- Foldy-Wouthuysen Transformation
(3) Lattice NRQCD
(4) Improvement upto $O\left(a^{4}\right)$
(5) Green's Function
(6) Relativistic fermions
- Wilson Fermions
(7) Tuning and mass calculation
- Heavy-heavy correlator
- Mass difference of Υ and η_{b}
- Heavy-light correlator
(8) B_{c} and B_{s} mesons
- B_{c} meson
- B_{s} meson
(9) Baryons
- $\Omega_{b b b}$
- $\Omega_{b b s}$

Introduction

- Lattice methods are powerful techniques in analyzing the spectrum of hadrons. However for hadrons containing heavy quarks particullarly bottom quark are difficult to analyze.
- For spectrum calculation it is necessary that $a M \ll 1$. For light quarks it is true but for charm quark $a M_{c}>0.7$ and for bottom qurak $a M_{b}>2$ with lattice spacing $a=0.12 \mathrm{fm}$.
- However in hadrons containing heavy quarks the velocities of heavy quarks are non-relativistic. One can use effective theories like NRQCD.
$M_{\curlyvee}=9390 \mathrm{MeV}$ where as $2 \times M_{b}=8360 \mathrm{MeV}(\overline{M S}$ Scheme $)$ and $M_{J / \psi}=3096$ MeV where as $2 \times M_{c}=2580 \mathrm{MeV}$.

Foldy-Wouthuysen Transformation

- The Dirac equation $H \psi=i \frac{\partial \psi}{\partial t}$ where

$$
H=\vec{\alpha} \cdot(\vec{P}-e \vec{A})+e \phi+m \beta
$$

- Non-relativistic limit is reached by making the following transformation $\psi^{\prime}=e^{i S} \psi$ where $S=-\frac{i}{2 m} \beta \vec{\alpha} \cdot(\vec{P}-e \vec{A})$.
- We get $i \frac{\partial \psi^{\prime}}{\partial t}=H^{\prime} \psi^{\prime}$ where

$$
\begin{aligned}
H^{\prime}= & e^{i S} H e^{-i S}-i e^{i S} \frac{\partial e^{-i S}}{\partial t} \\
= & H+i[S, H]-\frac{1}{2}[S,[S, H]]-\frac{i}{6}[S,[S,[S, H]]]+\ldots \ldots . \\
& -\dot{S}-\frac{i}{2}[S, \dot{S}]+\frac{1}{6}[S,[S, \dot{S}]]+\ldots \ldots \ldots
\end{aligned}
$$

- Defining $\theta=\vec{\alpha} \cdot(\vec{P}-e \vec{A})$ we get (up to $\left.O\left(v^{4} / c^{4}\right)\right)$

$$
\begin{aligned}
H^{\prime}= & \beta\left(m+\frac{\theta^{2}}{2 m}-\frac{\theta^{4}}{8 m^{3}}\right)+e \phi-\frac{e}{8 m^{2}}[\theta,[\theta, \phi]]-\frac{i}{8 m^{2}}[\theta, \dot{\theta}] \\
& +\frac{e \beta}{2 m}[\theta, \phi]+i \beta \frac{\dot{\theta}}{2 m}-\frac{\theta^{3}}{3 m^{2}}
\end{aligned}
$$

- writting

$$
\begin{gathered}
\psi^{\prime}=\binom{u}{v} \\
i \frac{\partial u}{\partial t}=\quad\left[m-\frac{1}{2 m} \sum_{j} D_{j}^{2}-\frac{e}{2 m} \sigma \cdot B-\frac{1}{8 m^{3}}\left(\sum_{j} D_{j}^{2}\right)^{2}\right. \\
\left.+e \phi-\frac{e}{8 m^{2}} \nabla \cdot E-\frac{i e}{8 m^{2}} \sigma \cdot(\nabla \times E-E \times \nabla)\right] u
\end{gathered}
$$

NRQCD Lagrangian

- Similarly like QED we write NRQCD Lagrangian upto $O\left[(v / c)^{6}\right]$

$$
\mathcal{L}=\mathcal{L}_{0}+\delta \mathcal{L}_{v^{4}}+\delta \mathcal{L}_{v^{6}}
$$

$$
\begin{gathered}
\mathcal{L}_{0}=\psi(x)^{\dagger}\left(i D_{0}+\frac{\vec{D}^{2}}{2 m}\right) \psi(x) \\
\delta \mathcal{L}_{v^{4}}= \\
c_{1} \frac{1}{8 m^{3}} \psi^{\dagger} D^{4} \psi+c_{2} \frac{g}{8 m^{2}} \psi^{\dagger}(\vec{D} \cdot \vec{E}-\vec{E} \cdot \vec{D}) \psi \\
+c_{3} \frac{i e}{8 m^{2}} \psi^{\dagger} \vec{\sigma} \cdot(\vec{D} \times \vec{E}-\vec{E} \times \vec{D}) \psi+c_{4} \frac{g}{2 m} \psi^{\dagger} \vec{\sigma} \cdot \vec{B} \psi \\
\delta \mathcal{L}_{v 6}= \\
c_{5} \frac{g}{m^{3}} \psi^{\dagger}\left\{\vec{D}^{2}, \vec{\sigma} \cdot \vec{B}\right\} \psi+c_{6} \frac{i g^{2}}{m^{3}} \psi^{\dagger}(\vec{\sigma} \cdot \vec{E} \times \vec{E}) \psi \\
\\
+c_{7} \frac{i g}{m^{4}} \psi^{\dagger}\left\{\vec{D}^{2}, \vec{\sigma} \cdot(\vec{D} \times \vec{E}-\vec{E} \times \vec{D})\right\} \psi
\end{gathered}
$$

- \mathcal{L}_{0} merely gives us Schrodinger equation.
- $c_{1}, c_{2}, c_{3}, c_{4}=1$ (tree level).
- To calculate c_{7} let us consider the term $T_{E}=\bar{\psi}(q) \gamma^{0} g \phi(q-p) \psi(p)$ with the positive energy spinor

$$
\begin{aligned}
& \psi(p)=\left(\frac{E_{p}+m}{2 E_{p}}\right)^{\frac{1}{2}}\left[\begin{array}{c}
u \\
\frac{\sigma . p}{E_{p}+m} u
\end{array}\right] \\
T_{E}= & \sqrt{\frac{\left(E_{p}+m\right)\left(E_{q}+m\right)}{4 E_{p} E_{q}}} \\
& \times u^{\dagger}\left[1+\frac{p . q+i \sigma \cdot q \times p}{\left(E_{q}+m\right)\left(E_{p}+m\right)}\right] g \phi(q-p) u
\end{aligned}
$$

- Term containg σ

$$
V(p, q)=\left[\frac{i}{4 m^{2}}-\frac{3 i}{32 m^{4}}\left(p^{2}+q^{2}\right)\right] u^{\dagger} \sigma \cdot(q \times p) g \phi(q-p) u
$$

- $c_{7}=\frac{3}{64}$.
- c_{5} can be calculated from $T_{B}(p, q)=-\bar{\psi}(q) g \gamma \cdot A(q-p) \psi(p)$ and so on
- $c_{5}=\frac{1}{8}, c_{6}=-\frac{1}{8}$

Lattice NRQCD

- Replace continuum derivatives by lattice derivaties.For quark fields

$$
\begin{aligned}
& a \Delta_{\mu}^{+} \psi(x)=U_{\mu}(x) \psi(x+a \hat{\mu})-\psi(x) \\
& a \Delta_{\mu}^{-} \psi(x)=\psi(x)-U_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})
\end{aligned}
$$

For gauge fields

$$
\begin{aligned}
& a \Delta_{\rho}^{+} F_{\mu \nu}(x)=U_{\rho}(x) F_{\mu \nu}(x+a \hat{\rho}) U_{\rho}^{\dagger}(x)-F_{\mu \nu}(x) \\
& a \Delta_{\rho}^{+} F_{\mu \nu}(x)=F_{\mu \nu}(x)-U_{\rho}^{\dagger}(x-a \hat{\rho}) F_{\mu \nu}(x) U_{\rho}(x-a \hat{\rho})
\end{aligned}
$$

Here a is the lattice spacing and $U_{\mu}(x)$ is link variable.

- Symmetric derivatie

$$
\Delta^{ \pm}=\frac{1}{2}\left(\Delta^{+}+\Delta^{-}\right)
$$

- Laplacian

$$
\Delta^{2} \equiv \sum_{i} \Delta_{i}^{+} \Delta_{i}^{-}=\sum_{i} \Delta_{i}^{-} \Delta_{i}^{+}
$$

Improvement upto $O\left(a^{4}\right)$

- For $a=0.12 \mathrm{fm}$ it is desirable to correct operators upto order $O\left(a^{4}\right)$.
- Symmetric derivative

$$
\begin{aligned}
\Delta_{i}^{ \pm} f(x) & =\frac{1}{2 a}[f(x+a \hat{i})-f(x-a \hat{i})] \\
& =\partial_{i} f+\frac{a^{2}}{6} \partial_{i}^{3} f \\
& =\partial_{i} f+\frac{a^{2}}{6} \Delta_{i}^{ \pm} \Delta_{i}^{+} \Delta_{i}^{-} f \\
\partial_{i} f & =\Delta_{i}^{ \pm} f-\frac{a^{2}}{6} \Delta_{i}^{+} \Delta_{i}^{ \pm} \Delta_{i}^{-} f \\
\tilde{\Delta}_{i}^{ \pm} f & =\Delta_{i}^{ \pm} f-\frac{a^{2}}{6} \Delta_{i}^{+} \Delta_{i}^{ \pm} \Delta_{i}^{-} f
\end{aligned}
$$

- Laplacian

$$
\tilde{\Delta}^{2}=\Delta^{2}-\frac{a^{2}}{12} \sum_{i}\left[\Delta_{i}^{+} \Delta_{i}^{-}\right]^{2}
$$

- Gauge fields corrected upto $O\left(a^{4}\right)$ \{using cloverleaf $\}$

$$
g \tilde{F}_{\mu \nu}(x)=g F_{\mu \nu}(x)-\frac{a^{4}}{6}\left[\Delta_{\mu}^{+} \Delta_{\mu}^{-}+\Delta_{\nu}^{+} \Delta_{\nu}^{-}\right] g F_{\mu \nu}(x)
$$

Green's Function

- The Lagrangian has the following form

$$
\mathcal{L}=\psi^{\dagger}(x, t) D_{4} \psi(x, t)+\psi^{\dagger}(x, t) H \psi(x, t)
$$

- H contains spatial derivaties only. E.O.M. corrsponding to ψ^{\dagger}

$$
\begin{aligned}
& D_{4} \psi(x, t)+H \psi(x, t)=0 \text { after discretization } \\
& U_{t}(x) \psi(x, t+1)-\psi(x, t)+a H \psi(x, t)=0
\end{aligned}
$$

Green's function obeys

$$
\begin{aligned}
& U_{t}(x, t) G(x, t+1 ; 0,0)-(1-a H) G(x, t ; 0,0)=\delta_{x, 0} \delta_{t, 0} \\
\Rightarrow \quad & G(x, t+1 ; 0,0)=U_{t}^{\dagger}(x, t)(1-a H) G(x, t ; 0,0)
\end{aligned}
$$

- From renormalization considerations

$$
\begin{aligned}
G(x, t+1 ; 0,0)= & \left(1-\frac{a H_{0}}{2}\right)\left(1-\frac{a \delta H}{2}\right) U_{t}(x, t)^{\dagger} \\
& \left(1-\frac{a \delta H}{2}\right)\left(1-\frac{a H_{0}}{2}\right) G(x, t ; 0,0)
\end{aligned}
$$

H_{0} and δH are related as $H=H_{0}+\delta H$. For stability purpose we modify

$$
\begin{aligned}
G(x, t+1 ; 0,0)= & \left(1-\frac{a H_{0}}{2 n}\right)^{n}\left(1-\frac{a \delta H}{2}\right) U_{t}(x, t)^{\dagger} \\
& \left(1-\frac{a \delta H}{2}\right)\left(1-\frac{a H_{0}}{2 n}\right)^{n} G(x, t ; 0,0)
\end{aligned}
$$

with $G(x, t ; 0,0)=0$ for $t<0$ and $G(x, t ; 0,0)=\delta_{x, 0}$ for $t=0$. From the above equation it is evident that $n>\frac{3}{2 m}$.

Relativistic fermions

- Action for free Dirac field

$$
S[\psi, \bar{\psi}]=\int d^{4} x \bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-M\right) \psi(x)
$$

Lattice version of the above action is

$$
S=\sum_{n, m, \alpha, \beta} \overline{\hat{\psi}}_{\alpha}(n) K_{\alpha \beta}(n, m) \hat{\psi}_{\beta}(m)
$$

where $K_{\alpha \beta}(n, m)$ is given by

$$
K_{\alpha \beta}(n, m)=\sum_{\mu} \frac{1}{2}\left(\gamma_{\mu}\right)_{\alpha \beta}\left[\delta_{m, n+\hat{\mu}}-\delta_{m, n-\hat{\mu}}\right]+\hat{M} \delta_{\alpha \beta} \delta_{m, n}
$$

- This action has doubling problem.

$$
\begin{gathered}
\delta_{n, m}=\int_{-\pi}^{\pi} \frac{d^{4} \hat{p}}{(2 \pi)^{4}} e^{i \hat{p} .(m-n)} \\
K_{\alpha \beta}(n, m)=\int_{-\pi}^{\pi} \frac{d^{4} \hat{p}}{(2 \pi)^{4}}\left[i \gamma_{\mu} \sin \left(\hat{p}_{\mu}\right)+\hat{M}\right] e^{i \hat{p} .(n-m)}
\end{gathered}
$$

Wilson Fermions

- Add a term to the action such that it is goes to zero in the continuum limit

$$
S^{W}=S-\frac{r}{2} \sum_{n} \overline{\hat{\psi}}(n) \hat{\unrhd} \hat{\psi}(n)
$$

- r is the Wilson parameter, lattice Laplacean $\hat{\square}$ is

$$
\hat{\emptyset} \hat{\psi}_{\alpha}(n a)=\sum_{\mu}\left[\hat{\psi}_{\alpha}(n a+\hat{\mu} a)+\hat{\psi}_{\alpha}(n a-\hat{\mu} a)-2 \hat{\psi}_{\alpha}(n a)\right]
$$

- Use $\int d^{4} x \rightarrow a^{4} \sum_{n}, \hat{\emptyset}=a^{2} \square$ and $\psi_{\alpha}(x) \rightarrow \frac{1}{a^{3 / 2}} \hat{\psi}_{\alpha}(n)$.
- The additional term vanishes linearly with a.

$$
S^{W}=\sum_{n, m} \overline{\hat{\psi}}(n) K^{W}(n, m) \hat{\psi}(m)
$$

where $K^{W}(n, m)$ is given by

$$
K^{W}(n, m)=\sum_{\mu} \frac{1}{2}\left[\left(\gamma_{\mu}-r\right) \delta_{m, n+\hat{\mu}}-\left(\gamma_{\mu}+r\right) \delta_{m, n-\hat{\mu}}\right]+(\hat{M}+4 r) \delta_{m, n}
$$

- Momentum space representation of K^{W}

$$
K^{W}(n, m)=\int_{-\pi}^{\pi} \frac{d^{4} \hat{p}}{(2 \pi)^{4}}\left[i \gamma_{\mu} \sin \left(\hat{p}_{\mu}\right)+\hat{M}+2 r \bar{p}_{\mu} \bar{p}_{\mu}\right] e^{i \hat{p} .(n-m)}
$$

with $\bar{p}_{\mu}=\sin \left(\frac{\hat{\rho}_{\mu}}{2}\right)$

- This action is free from doubling problem but it breaks the chiral symmetry ($\psi \rightarrow e^{i \theta \gamma_{5}} \psi$) as the Wilson term does not contain $\gamma_{\mu} \Rightarrow$ "Overlap Fermions"
- The modified Dirac operator D satisfies "GW-relation"

$$
\gamma_{5} D+D \gamma_{5}=a D \gamma_{5} D
$$

- Any D of the form

$$
\begin{aligned}
D= & \frac{1}{a}(1-V) \text { with } \\
& V^{\dagger} V=1 \text { and } V^{\dagger}=\gamma_{5} V \gamma_{5}
\end{aligned}
$$

satisfies GW-relation.

- An explicit solution for D was given by Neuberger

$$
\begin{aligned}
& V=A\left(A^{\dagger} A\right)^{-\frac{1}{2}} \text { where } \\
& A=1-K^{W}
\end{aligned}
$$

- Other fermions $=$ HISQ, Domain Wall, Twisted mass

Tuning and mass calculation

- In NRQCD Lagrangian the rest mass term is not included.
- In order to tune b-quark we calculated 'kinetic mass' of η_{b} meson

$$
\begin{aligned}
E(p)-E(0) & =\sqrt{p^{2}+M^{2}}-M \\
\Rightarrow \Delta E+M & =\sqrt{p^{2}+M^{2}} \text { where } \Delta E=E(p)-E(0) \\
\Rightarrow(\Delta E)^{2}+2 M \Delta E & =p^{2} \\
\Rightarrow M & =\frac{p^{2}-(\Delta E)^{2}}{2 \Delta E}
\end{aligned}
$$

Heavy-heavy correlator

- For mesons containing both heavy quarks let the heavy quark and anti-quark are created by two component spinor ψ^{\dagger} and χ and their destruction operators are ψ and χ^{\dagger}. As anti-quaks transform by $\overline{3}$ under color rotation so it is convinient to rename the anti-quark spinor.

$$
\begin{aligned}
C(\vec{p}, t) & =\sum_{x}\langle 0| e^{i \overrightarrow{\vec{p} . \vec{x}}} O(\vec{x}, t) O^{\dagger}(\overrightarrow{0}, 0)|0\rangle \\
& =\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\langle 0| \chi^{\dagger}(x) \Gamma_{s k}(x) \psi(x) \psi^{\dagger}(0) \Gamma_{s c}^{\dagger}(0) \chi(0)|0\rangle \\
& =-\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\left\langle 0 \mid \chi(0) \chi^{\dagger}(x) \Gamma_{s k}(x) \psi(x) \psi^{\dagger}(0) \Gamma_{s c}^{\dagger}(0) 0\right\rangle \\
& =\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \operatorname{rr}_{r}\left[G^{\dagger}(x, 0) \Gamma_{s k}(x) G(x, 0) \Gamma_{s c}^{\dagger}(0)\right]
\end{aligned}
$$

- In the last line we have used $G^{\dagger}(x, 0)=-\left[\chi(x) \chi^{\dagger}(0)\right]^{\dagger}$. Here $\Gamma(x)=\Omega \phi(x)$. ϕ is the smearing operator and Ω is a 2×2 matrix in spin space. $\Omega=I$ for pseudoscalar particles and $\Omega=\sigma_{i}$ for vector particles.
- We ran our code on $40,24^{3} 64$ milc lattices. Nr-loop $n=3$ and mass is tuned to $m=0.759$.
- Here we shown the correlators for η_{b} obtained at momenta $\vec{p}=\frac{2 \pi}{L}(2,0,0)$ and $\vec{p}=\frac{2 \pi}{L}(0,0,0)$ with $L=24$. We find kinetic mass of $\eta_{b}=9.42 \mathrm{GeV}$.

Figure: Heavy-heavy p200 vs p0

Mass difference of Υ and η_{b}

- The following plot shows the mass differencebetween Υ and η_{b}. For fit range 7-17 we find the splitting to be $=131 \mathrm{MeV}$.

Figure: Hyperfine splitting

Heavy-light correlator(light = overlap)

- For mesons containing one heavy quark and one light anti-quark the interpolating operator is $Q^{\dagger}(x) \Gamma(x) q(x)$.

$$
\begin{aligned}
C(\vec{p}, t) & =\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\langle 0| q^{\dagger}(x) \Gamma_{s k}^{\dagger}(x) Q(x) Q^{\dagger}(0) \Gamma_{s c}(0) q(0)|0\rangle \\
& =-\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\langle 0| q(0) q^{\dagger}(x) \Gamma_{s k}^{\dagger}(x) Q(x) Q^{\dagger}(0) \Gamma_{s c}(0)|0\rangle \\
& =-\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \operatorname{Tr}\left[M(0, x) \gamma_{4} \Gamma_{s k}^{\dagger}(x) G(x, 0) \Gamma_{s c}(0)\right] \\
& =-\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \operatorname{Tr}\left[\gamma_{5} M(x, 0)^{\dagger} \gamma_{5} \gamma_{4} \Gamma_{s k}^{\dagger}(x) G(x, 0) \Gamma_{s c}(0)\right]
\end{aligned}
$$

B_{c} meson

- Plot for B_{c} meson correlators.

Figure: Heavy-light meson correlators obtained at zero momentum

- From fit $E_{B_{c}}=1.46149=1.46149 \times 197.3 / 0.12=2402 \mathrm{Mev}$
- As we used kinetic mass in tuning the bottom and charm masses we had to use the following formula to calculate the mass of B_{c}.

$$
M_{B_{c}}=E_{B_{c}}+\frac{1}{2}\left(M_{\eta_{b}}-E_{\eta_{b}}\right)+\frac{1}{2}\left(M_{\eta_{c}}-E_{\eta_{c}}\right)
$$

Here $E_{B_{c}}, E_{\eta_{b}}, E_{\eta_{c}}$ are the simulated masses and $M_{\eta_{b}}, M_{\eta_{c}}$ are their pdg values.

- $M_{B_{c}}=2402+[(2980-2190) / 2]+[(9391-2472) / 2]=6256.5 \mathrm{Mev}$ with error $= \pm 20 \mathrm{MeV}$
- s-quark has been directly tuned to produce $s \bar{s}$ pseudoscalar mass to be 686 MeV . Here we used the following formula to calculate the mass of pseudoscalar s-quarkonium state

$$
M_{s \bar{s}}=\sqrt{2 M_{K}^{2}-M_{\pi}^{2}}
$$

where M_{K} and M_{π} are kaon and pion masses.

- B_{s} meson mass is calculated as

$$
M_{B_{s}}=E_{B_{s}}+\frac{1}{2}\left(M_{\eta_{b}}-E_{\eta_{b}}\right)
$$

$M_{B_{s}}=1640+(9389-2476) / 2=5096 \mathrm{MeV}$

Heavy-light correlator(light $=$ hisq)

- $\boldsymbol{Q}=\binom{\phi}{0}, \Gamma=\gamma_{5}$ or $\Gamma=\gamma_{k}$

$$
\begin{aligned}
C(\vec{p}, t) & =\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}}\langle 0| q^{\dagger}(x) \Gamma_{s k}^{\dagger}(x) Q(x) Q^{\dagger}(0) \Gamma_{s c}(0) q(0)|0\rangle \\
& =-\sum_{\vec{x}} e^{i \vec{p} \cdot \bar{x}}\langle 0| q(0) q^{\dagger}(x) \Gamma Q(x) Q^{\dagger}(0) \Gamma|0\rangle \\
& =-\sum_{\vec{x}} e^{i \vec{p} \cdot \bar{x}} \operatorname{Tr}\left[M(0, x) \gamma_{4} \Gamma G(x, 0) \Gamma\right] \\
& =-\sum_{\vec{x}} e^{i \vec{p} \cdot \bar{x}} \operatorname{Tr}\left[\gamma_{5} M(x, 0)^{\dagger} \gamma_{5} \Gamma G(x, 0) \Gamma\right]
\end{aligned}
$$

- $G(x, 0)$ is now a 4×4 matrix in spinor space having vanishing lower components but it is in Dirac representation of gamma matrices. We can convert it to milc gamma representation by an unitary transformation $S=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\sigma_{y} & \sigma_{y} \\ -\sigma_{y} & \sigma_{y}\end{array}\right)$

B_{s} meson

- Plot for B_{s} meson correlators.

Figure: Heavy-light meson correlators obtained at zero momentum

- $M_{B_{s}}=1584+(9389-2476) / 2=5040 \mathrm{MeV}$

$\Omega_{b b b}$ baryon

- Interpolator $\left(\mathcal{O}_{k}\right)_{\alpha}=\epsilon_{a b c}\left(Q^{a T} C \gamma_{k} Q^{b}\right) Q_{\alpha}^{c}$ with $C=\gamma_{4} \gamma_{4}$

$$
\begin{aligned}
C_{i j \alpha \beta}(t) & =\sum_{\vec{x}}\langle 0|\left[\mathcal{O}_{i}(\vec{x}, t)\right]_{\alpha}\left[\mathcal{O}_{j}^{\dagger}(\overrightarrow{0}, 0)\right]_{\beta}|0\rangle \\
& =\sum_{\vec{x}} \epsilon_{a b c} \epsilon_{f g h} G_{\alpha \beta}^{c h}(x, 0) \operatorname{Tr}\left[C \gamma_{i} G^{b g}(x, 0) \overline{C \gamma_{j}} G^{a f^{T}}(x, 0)\right]
\end{aligned}
$$

- The correlator has overlap with both spin $3 / 2$ and spin $1 / 2$ states

$$
\begin{gathered}
C_{i j}(t)=Z_{3 / 2} e^{-E_{3 / 2} t} \Pi P_{i j}^{3 / 2}+Z_{1 / 2} e^{-E_{1 / 2} t} \Pi P_{i j}^{1 / 2} \\
\Pi=\frac{1}{2}\left(1+\gamma_{4}\right), P_{i j}^{3 / 2}=\delta_{i j}-\frac{1}{3} \gamma_{i} \gamma_{j}, P_{i j}^{1 / 2}=\frac{1}{3} \gamma_{i} \gamma_{j} \text { and } P_{i j}^{3 / 2} \cdot P_{j k}^{1 / 2}=0 . \\
\text { - } P_{x x}^{3 / 2} \cdot C_{x x}+P_{x y}^{3 / 2} \cdot C_{y x}+P_{x z}^{3 / 2} \cdot C_{z x}=\frac{2}{3} Z_{3 / 2} \Pi e^{-E_{3 / 2} t}
\end{gathered}
$$

- Plot for $\Omega_{b b b}$ correlator

Figure: Omega 3/2

- $M_{\Omega_{b b b}}=E_{\Omega_{b b b}}+\frac{3}{2}\left(M_{\eta_{b}}-E_{\eta_{b}}\right)=14.38 \mathrm{GeV}$ with error $= \pm 20 \mathrm{MeV}$

$\Omega_{b b s}$ baryon

- Interpolator $\left(\mathcal{O}_{k}\right)_{\alpha}=\epsilon_{a b c}\left(Q^{a T} C \gamma_{k} Q^{b}\right) s_{\alpha}^{c}$

$$
\begin{aligned}
C_{i j \alpha \beta}(t) & =\sum_{\vec{x}}\langle 0|\left[\mathcal{O}_{i}(\vec{x}, t)\right]_{\alpha}\left[\mathcal{O}_{j}^{\dagger}(\overrightarrow{0}, 0)\right]_{\beta}|0\rangle \\
& =\sum_{\vec{x}} \epsilon_{a b c} \epsilon \epsilon_{g h}\left[M^{c h}(x, 0) \cdot \gamma_{4}\right]_{\alpha \beta} \operatorname{Tr}\left[C \gamma_{i} G^{b g}(x, 0) \overline{C \gamma_{j}} G^{a T^{T}}(x, 0)\right]
\end{aligned}
$$

- Change $G(x, 0)$ into milc gamma representation.
- $P_{x x}^{3 / 2} \cdot C_{x x}+P_{x y}^{3 / 2} \cdot C_{y x}+P_{x z}^{3 / 2} \cdot C_{z x}=\frac{2}{3} Z_{3 / 2} \Pi e^{-E_{3 / 2} t}$
- Plot for $\Omega_{b b s}$ correlator

Figure: Omegabbs $3 / 2$

- $M_{\Omega_{\text {bbs }}}=E_{\Omega_{\text {bbs }}}+\left(M_{\eta_{b}}-E_{\eta_{b}}\right)=9.81 \mathrm{GeV}$ with error $= \pm 40 \mathrm{MeV}$

$\mathcal{T H A N K}$ YOU

Backup

Figure: hh hl II mesons

Green's Function for anti-quark

- Antiquarks transform as $\overline{3}$'s under color rotation i.e change $U_{x, \mu} \rightarrow U_{x, \mu}^{*}$. Replace ψ by $\tilde{\chi}$. To compare it with Dirac's theory we change the variable as $\chi=\tilde{\chi}^{*}$

$$
\begin{aligned}
\tilde{\chi}(x, t)^{\dagger} U_{t}^{*}(x) \tilde{\chi}(x, t+1) & =\left(\chi^{*}(x, t)\right)^{\dagger} U_{t}^{*}(x) \chi^{*}(x, t+1) \\
& =(\chi(x, t))^{T}\left(U_{t}^{\dagger}\right)^{T}(x)\left(\chi^{\dagger}(x, t+1)\right)^{T} \\
& =-\chi^{\dagger}(x, t+1) U_{t}^{\dagger}(x) \chi(x, t)
\end{aligned}
$$

We used the fact that it is 1×1 quantity so we can ignore the transpose sigh altogether and we put the minus sign because χ 's are fermionic field they obey Grassmann algebra. So if the we write the quark action as $S_{Q}=\psi^{\dagger} K \psi$ then we for anti-quark we have $S_{\bar{Q}}=-\chi^{\dagger} K^{\dagger} \chi$.

