Simulating low dimensional finite density QCD on Lefschetz Thimbles

Felix Ziesché

```
Physics Department
Bielefeld University
```

Hadron Structure, Hadronic Matter, and Lattice QCD, Dubna 2017

Motivation: The sign problem

For example in Lattice QCD with $\mu>0: S=S_{R}+i S_{I} \in \mathbb{C}$.
$\rightarrow \frac{e^{-S}}{\int_{\Gamma} \mathrm{d} U e^{-S}}$ is no probability density anymore.
Possible solution: Use the phase quenched partition sum
$Z_{p q}=\int_{\Gamma} \mathrm{d} U e^{-S_{R}}$ and reweight with the phase:
$\langle\mathcal{O}\rangle=\frac{\int \mathrm{d} U \mathcal{O}(U) e^{-i S_{I}[U]} e^{-S_{R}[U]}}{\int \mathrm{d} U e^{-S_{R}[U]}} \frac{\int \mathrm{d} U e^{-S_{R}[U]}}{\int \mathrm{d} U e^{-i S_{I}[U]} e^{-S_{R}[U]}}=\frac{\left\langle\mathcal{O} e^{-i S_{I}}>_{p q}\right.}{\left\langle e^{-i S_{I}}>_{p q}\right.}$
How does $\left\langle e^{-i S_{I}}\right\rangle_{p q}$ behave? Observe
$\bullet<e^{-i S_{I}}>_{p q}=\frac{Z}{Z_{p q}}$

- $Z_{p q}>Z \Rightarrow f-f_{p q}=\Delta f=-\frac{T}{V} \log \frac{Z}{Z_{p q}}>0$.

$$
\Rightarrow<e^{-i S_{I}}>_{p q}=e^{-\frac{V}{T} \Delta f}
$$

Solution: Changing the integration contour to something that has no sign problem.

The model: One flavor $0+1 \mathrm{~d}-\mathrm{QCD}$

One space-time dimension: $F_{\mu \nu}=0 \Rightarrow S_{G}=0$.
$\longrightarrow S=S_{F}$ and the discretized staggered fermion action reads:

$$
\hat{S}_{F}(\mu)=\frac{1}{2} \sum_{n=0}^{N_{\tau}-1} \bar{\chi}(n)\left(e^{\mu} U(n) \chi(n+1)-e^{-\mu} U^{\dagger}(n-1) \chi(n-1)+2 m \chi(n)\right)
$$

Integrating out the fermion fields in the partition sum, we have

$$
Z\left(N_{\tau}, \mu\right)=\int \mathrm{d} U \mathrm{~d} \bar{\chi} \mathrm{~d} \chi e^{-\bar{\chi} M[U] \chi}=\int \mathrm{d} U \operatorname{det} M[U]
$$

This determinant can be reduced to

$$
\begin{aligned}
\operatorname{det}(M[U]) & =\frac{1}{2^{3 N_{\tau}}} \operatorname{det}\left(2 \cosh \left(N_{\tau} \sinh ^{-1}(m)\right) \mathbb{I}+e^{N_{\tau} \mu} P+e^{-N_{\tau} \mu} P^{\dagger}\right) \\
P & =\prod_{n=0}^{N_{\tau}-1} U(n)
\end{aligned}
$$

For $\mu>0$, this is complex.

The Monodromy theorem

Theorem

- Let $f: \tilde{\Gamma} \rightarrow \mathbb{C}$ be a holomorphic function on $\tilde{\Gamma}$ and
- $\Gamma, \Gamma^{\prime} \subset \tilde{\Gamma}$ be homotopic submanifolds of $\tilde{\Gamma}\left(\Gamma \simeq \Gamma^{\prime}\right)$.

Then

$$
\int_{\Gamma} \mathrm{d} z f(z)=\int_{\Gamma^{\prime}} \mathrm{d} z f(z) .
$$

If we have $F: \Gamma \rightarrow \Gamma^{\prime}$, then we can express

$$
\int_{\Gamma^{\prime}} \mathrm{d} z f(z)=\int_{\Gamma} \mathrm{d} z \operatorname{det}[d F] f(z) .
$$

We take $\Gamma=\operatorname{SU}(3)$, whose complexification is $\tilde{\Gamma}=\mathrm{SL}(3, \mathbb{C})$. S can be analytically continued into $\mathrm{SL}(3, \mathbb{C})$ by replacing P^{\dagger} with P^{-1}.

Steepest ascent equation

$$
\frac{\mathrm{d} \omega_{k}}{\mathrm{~d} t}=\left(\frac{\partial S}{\partial \omega_{k}}\right)^{*}, P(t)=\exp \left[\sum_{k=1}^{8} \omega_{k}(t) T^{k}\right]
$$

- $S_{I}[P(t)]=$ const., while S_{R} is increased.
- Induces Flow mapping for fixed t

$$
\begin{aligned}
F_{t}: \mathrm{SU}(3) & \longrightarrow \mathcal{M}_{t} \subset \mathrm{SL}(3, \mathbb{C}) \\
P & \longmapsto P(t)=e^{\sum_{k} \omega_{k}(t) T^{k}} .
\end{aligned}
$$

The Contraction algorithm

A. Alexandru et al., Phys. Rev. D93, arXiv 1510.03258
(1) Select starting point $P_{0} \in \mathrm{SU}(3)$.
(2) Pick $P_{n+1} \in \mathrm{SU}(3)$ from an isotropic, ergodic distrib. around P_{n}
(0) Calculate $\tilde{P}_{n+1}=F_{t}\left(P_{n+1}\right)$ by integrating numerically (e.g. Runge Kutta)
(0) Parallel transport e^{1}, \ldots, e^{8} along F_{t} by integrating

$$
\frac{\mathrm{d} v_{k}}{\mathrm{~d} t}=\left(\sum_{l=1}^{8} \frac{\partial^{2} S}{\partial \omega_{k} \partial \omega_{l}} v_{l}\right)^{*}, \Rightarrow \operatorname{det}\left[\mathrm{~d} F_{t}\right]=\operatorname{det}\left[v^{1}(t), \ldots, v^{8}(t)\right] .
$$

(0) Calculate $S_{\text {eff }}=S_{R}-\log \left|\operatorname{det}\left[\mathrm{d} F_{t}\right]\right|$
(- Accept \tilde{P}_{n+1} with probability $\min \left\{1, e^{-\left(S_{\text {eff }}\left(\tilde{P}_{n+1}\right)-S_{\text {eff }}\left(\tilde{P}_{n}\right)\right)}\right\}$, otherwise $P_{n+1}=P_{n}$ and repeat from 2.

$$
\Rightarrow<\mathcal{O}>=\frac{<\mathcal{O} \frac{\operatorname{det}\left[\mathrm{d} F_{t}\right]}{\mid \operatorname{det}\left[\mathrm{d} F_{t}\right]} e^{-i S_{I}}>_{S_{\text {eff }}}}{<\frac{\operatorname{det}\left[\mathrm{d} F_{t}\right]}{\left|\operatorname{det}\left[\mathrm{d} F_{t}\right]\right|} e^{-i S_{I}}>_{S_{\text {eff }}}}
$$

Comparison to Reweighting

Figure: Scatterplot of sampled configurations for $m=0.1, \mu=0.35$ and the variations of S_{I} for $t=1.5$ and $m=1$ compared with normal Reweighting.

Results for $m=1$

Figure: Results for $N_{\tau}=4, m=1.0$ using the effective action.

More sophisticated approach needed.

Lefschetz thimbles

F. Pham, Proc. Symp. in Pure Math. Vol. 40 319-333, 1983

$$
Z=\int_{\mathrm{SU}(3)} \mathrm{d} P e^{-S}
$$

- S has only non-degenerate crit. points:

$$
\frac{\partial S}{\partial \omega_{k}}\left(P_{\sigma}\right)=0 \forall k, \operatorname{det}\left[\frac{\partial^{2} S}{\partial \omega_{k} \partial \omega_{l}}\right]\left(P_{\sigma}\right) \neq 0
$$

- \Rightarrow Lefschetz thimbles

$$
\mathcal{J}_{\sigma}=\left\{P \in \mathrm{SL}(3, \mathbb{C}) \mid F_{t}(P) \xrightarrow{t \rightarrow-\infty} P_{\sigma}\right\}
$$

- $\left.S\right|_{\mathcal{J}_{\sigma}}=$ const.

$$
\begin{gathered}
\Rightarrow \mathrm{SU}(3) \simeq \sum_{\sigma} n_{\sigma} \mathcal{J}_{\sigma} \\
\longrightarrow \int_{\mathrm{SU}(3)} \mathrm{d} P e^{-S}=\sum_{\sigma} n_{\sigma} e^{-i S_{I}\left[P_{\sigma}\right]} \int_{\mathcal{J}_{\sigma}} \mathrm{d} P e^{-S_{R}}
\end{gathered}
$$

The geometric structure of $0+1 \mathrm{~d}-\mathrm{QCD}$

C. Schmidt and F. Ziesché, Proc. LATTICE2016, arXiv 1701.08959

- The critical points obtained are

$$
P_{\sigma}=\mathbb{I}, e^{ \pm i \frac{2 \pi}{3}} \mathbb{I} .
$$

These are the center elements of $\operatorname{SU}(3)$. This is the original integration domain, so they all have intersection number $n_{\sigma}=1$. Including the divergent regions, where the thimbles end, we have:

Which one contributes where... an approximation

The decomposition of the partition sum is

$$
Z=\int_{\mathrm{SU}(3)} \mathrm{d} P e^{-S[P]}=\sum_{\sigma=0}^{2} \int_{\mathcal{J}_{k}} \mathrm{~d} P e^{-S[P]}:=\sum_{\sigma=0}^{2} Z_{\sigma}
$$

Z_{σ} cannot be calculated directly by Monte Carlo. But at least, we want to know how much each partition sum contributes.
\rightarrow We approximate S around its critical points to get an estimate
(Di Renzo, Eruzzi - Gaussian Approximation - see Lattice 2016):

$$
\begin{gathered}
S[P] \approx S\left[P_{\sigma}\right]+\left.\frac{1}{2} \sum_{k, l} \frac{\partial^{2} S}{\partial \omega_{k} \partial \omega_{l}}\right|_{P_{\sigma}}\left(\omega_{k}(P)-\omega_{k}\left(P_{\sigma}\right)\right)\left(\omega_{l}(P)-\omega_{l}\left(P_{\sigma}\right)\right) \\
\Rightarrow Z \approx \sum_{\sigma=0}^{2} \int \prod_{k=1}^{8} \mathrm{~d} \omega_{k} e^{-S\left[P_{\sigma}\right]-\left.\frac{1}{2} \sum_{k} \frac{\partial^{2} S}{\partial \omega_{k} \partial \omega_{k}}\right|_{P_{\sigma}} \omega_{k}^{2}}
\end{gathered}
$$

Which one contributes where... an approximation

We can now plot the ratio of $\left|Z_{0}\right|$ over the overall sum.

Metropolis on LTs

A. Mukherjee, Phys. Rev. D88, arXiv 1308.0233
(1) Choose \mathcal{J}_{σ} with probability $\frac{n_{\sigma}}{\sum_{\sigma^{\prime}} n_{\sigma^{\prime}}}$.
(2) Apply Steps 2 to 4 from Contraction algorithm with $P_{n} \in T_{P_{\sigma}} \mathcal{J}_{\sigma}$ and $\left(e^{1}, \ldots, e^{8}\right)$ Basis of $T_{P_{\sigma}} \mathcal{J}_{\sigma}$. (One can get these by solving the Takagi eigeneq.)
(0) Accept \tilde{P}_{n} with probability $\min \left\{1, e^{-\left(S_{\text {eff }}\left(\tilde{P}_{n+1}\right)-S_{\text {eff }}\left(\tilde{P}_{n}\right)\right)}\right\}$ and repeat from 1.
Flowtime t_{σ} and proposal width d_{σ} have to be tuned according to the Thimble.

Outlook

- Improvement of Maryland Approach: Parallel Tempering (see e.g. A. Alexandru et al. 1703.02414, M. Fukuma et al. 1703.00861)
- higher-dimensional Lattice-QCD: Critical points \rightarrow Gauge Orbits \Rightarrow Generalized Lefschetzt thimbles (see E. Witten 1001.2933)
- Applications to other sign problems (e.g. Real-Time QCD)
- Usage in continuum theory (Resurgence theory, instantons, ...)

The Hessian $\partial^{2} S$

To calculate the Takagi vectors, which span the tangent space $T_{P_{\sigma}} \mathcal{J}_{\sigma}$, we need to calculate the Hessian

$$
\frac{\partial^{2} S}{\partial \omega_{k} \partial \omega_{l}}=\operatorname{Tr}\left[M^{-1} \frac{\partial M}{\partial \omega_{k}} M^{-1} \frac{\partial M}{\partial \omega_{l}}-M^{-1} \frac{\partial^{2} M}{\partial \omega_{k} \partial \omega_{l}}\right] .
$$

... which is easy for $P=e^{i \gamma} \mathbb{I}$

$$
\frac{\partial^{2} S}{\partial \omega_{k} \partial \omega_{l}}=\frac{1}{2}\left(\frac{\cosh \left(N_{\tau} \mu+i \gamma\right)}{B_{\gamma}}-\frac{\sinh ^{2}\left(N_{\tau} \mu+i \gamma\right)}{B_{\gamma}^{2}}\right) \delta^{k l}=: h_{\gamma} \delta^{k l}
$$

with

$$
B_{\gamma}=\cosh \left(N_{\tau} \mu_{c}\right)+\cosh \left(N_{\tau} \mu+i \gamma\right)
$$

The Takagi equation reads

$$
H^{*} \rho_{\lambda}^{*}=\lambda \rho_{\lambda}, \quad \lambda \in \mathbb{R}
$$

... with $H^{k l}=h_{\gamma} \delta^{k l}$, we have as solutions

$$
\lambda=\left|h_{\gamma}\right|, \quad \rho_{\lambda}^{k}=c e^{k} \text { with } c=\sqrt{\frac{h_{\gamma}^{*}}{\left|h_{\gamma}\right|}} .
$$

