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Introduction

• One of the most challenging problem in QCD is to understand the inter-
nal structure of hadrons. To aim this, generalized parton distributions
(GPDs) and transverse momentum distributions (TMDs) are proved to
be an excellent tools. The ultimate understanding of the structure can be
obtained by joint position and momentum distributions named as Wigner
distributions. These distributions contain the most general one-body in-
formation of partons, corresponding to the full one-body density matrix
in both momentum and position space, and reduce in certain limits to
TMDs and GPDs.

• We study the Wigner distributions for a physical electron, which reveal
the multidimensional images of the electron. The physical electron is
considered as a composite system of a bare electron and photon. The
Wigner distributions for unpolarized, longitudinally polarized and trans-
versely polarized electron are presented in transverse momentum plane as
well as in impact parameter plane. We also evaluate all the leading twist
generalized transverse momentum distributions (GTMDs) for electron.

Light front QED Model

We evaluate the results for the Wigner distribution of the physical electron
by considering it as a two particle state (electron and photon). The two
particle Fock state for an electron with Jz = 1

2 has four possible combina-
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.
Similarly, two particle Fock state for an electron with Jz = −1

2 also has
four possible combinations:
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where
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Unpolarized Wigner distributions

• Wigner distribution in the light-front framework is defined as[2,3]
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with Γ, for example γ+, γ+γ5, iσj+γ5 and S is the spin of the composite system. We
have defined the P ′ = (P+, P ′−, ∆⊥

2 ) and P ′′ = (P+, P ′′−,−∆⊥
2 ) are the initial and

final momentum of the composite system. We define the unpolarizedWigner distribution
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Figure 1: Plots of Wigner distribution ρUU (b⊥,p⊥) for physical electron in impact-
parameter space with fixed transverse momentum p⊥ = 0.4 MeV êx (left panel), in
momentum space with fixed impact-parameter b⊥ = 0.4 MeV −1 êx (middle panel) and
in mixed space (right panel).

Longitudinal-unpolarized polarized Wigner
distributions

• The longitudinally-unpolarized Wigner distribution is defined as
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Figure 2: Plots of Wigner distribution ρLU (b⊥,p⊥) for physical electron in impact-
parameter space with fixed transverse momentum p⊥ = 0.4 MeV êx (left panel), in mo-
mentum space with fixed impact-parameter b⊥ = 0.4 MeV −1 êx (middle panel) and in
mixed space (right panel).

Transverse Wigner distributions

• The transverse Wigner distributions is defined as
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Figure 3: Plots of Wigner distribution ρTT (b⊥,p⊥) for physical electron in impact-
parameter space with fixed transverse momentum p⊥ = 0.4 MeV êx (left panel), in
momentum space with fixed impact-parameter b⊥ = 0.4 MeV −1 êx (middle panel) and
in mixed space (right panel).

Transverse shape of an electron

• The shapes of an electron can be obtained by using the following relation which was
first introduced in [4],
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where φ is the angle between p⊥ and S and φn is the angle between n and S. n is
the unit vector which describes the arbitrary spin of the particle in a fixed direction.
S is the physical electron polarization in the transverse direction. Further, f1, h1 and
h⊥1T are the unpolarized electron distribution, transversity, and pretzelous distributions
respectively and f̃ (p2

⊥) =
∫
dxf (x,p2

⊥).
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Transverse shape of electron for different values of p⊥. The
shapes are denoted with different lines.

Since the pretzelous distribution h⊥1T is zero in this model, thus the shape of an electron
explicitly depends upon f1 and h1. We show that how the shape of an electron emerges
when we take the different angles between n and S.
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