

The fixed target BM@N experiment for studies of heavy nucleus interactions at NICA

P. Batyuk for BM@N collaboration

August 21, 2021

P. Batyuk

NICA (Nuclotron based Ion Collider fAcility)

BM@N: Beams from p to Au, heavy ion energy 1 - 3.8 AGeV (lab. system), Au intensity \sim a few 10⁶ Hz

P. Batyuk

Heavy-ion Collision Experiments

EoS of symmetric and asymmetric nuclear matter

Ch.Fuchs and H.H. Wolter, EPJA 30 (2006) 5

EoS: relation between density, pressure, temperature, energy and isospin asymmetry $E_A(\rho, \delta) = E_A(\rho, 0) + E_{sym}(\rho) \cdot \delta^2$ $\delta = (\rho_n - \rho_p)/\rho$ $E/A(\rho_0) = -16MeV$

Nuclear incompressibility: Curvature $K_{nm} = 9\rho^2 \delta^2 (\mathbf{E}/\mathbf{A})/\delta \rho^2$

Study of sym. matter EoS at $\rho = 3$ - 5 ρ_0

- elliptic flow of protons, mesons and hyperons
- sub-threshold production of strange mesons and hyperons
- extract *K*_{nm} from data to model predictions

Constrain symmetry energy E_{sym}

- elliptic flow of neutrons vs protons
- sub-threshold production of particles with opposite isospin

Sub-threshold production of strange mesons and hyperons

Hyperon yields at the Nuclotron

- AuAu @ 4A GeV, min. bias, multiplicities
- Beam intensity $10^6/s$, reaction rate $10^4/s$
- Experimental run for 2200 hours $(2 \cdot 10^{10})$

Data from AGS also can be taken into account for

Expected hyperon yields in the BM@N energy range

Doutialo	F. (NN)	Mult.	Mult.	c [07]	$\mathbf{Yield/s}$	Yield / 2200 hours
rarticle	$E_{thr}(1111)$	centr	min bias	[٥٧] ٤	[min bias]	[min bias]
Ξ	3.7	$1 \cdot 10^{-1}$	$2.5 \cdot 10^{-2}$	1	2.5	$5\cdot 10^6$
Ω^{-}	6.9	$2 \cdot 10^{-3}$	$5 \cdot 10^{-4}$	1	$5 \cdot 10^{-2}$	$1\cdot 10^5$
$\bar{\Lambda}$	7.1	$2 \cdot 10^{-4}$	$5 \cdot 10^{-5}$	3	$1.5\cdot10^{-2}$	$3\cdot10^4$
Ξ+	9.0	$6 \cdot 10^{-5}$	$1.5 \cdot 10^{-5}$	1	$1.5 \cdot 10^{-3}$	$3\cdot 10^3$
Ω^+	12.7	$1 \cdot 10^{-5}$	$2.5 \cdot 10^{-5}$	1	$2.5 \cdot 10^{-4}$	$5\cdot 10^2$

Hypernuclei production

The BM@N energy range is well suited for search and studies of hypernuclei

BM@N, exp. run of 2017

Program:

- Trace beam through detectors, align detectors
- Measure inelastic reactions C + target(C, Al, Cu, Pb) $\rightarrow X$ with carbon beam energies of T = 3.5 - 4.5 AGeV

Focus on tests and commissioning of central tracker inside analyzing magnet: - Five GEM detectors 66 x 41 cm² (small) + Two GEM detectors 163 x 45 cm² (big) - One plane of silicon detector

P. Batyuk

BM@N, exp. run of 2017

Λ⁰-hyperon yield in C+X @ 4AGeV, min bias interactions
Measured kinematic range: 0.1 < p_T < 1.05 GeV/c, 0.03 < y* < 0.93

Experimental limitations within the run:

- low granularity tracking systems (small *S*/*B* ratio)
- no vacuum beampipe installed

BM@N, exp. run of 2018

Program:

- Measure inelastic reactions Ar $(Kr) + target \rightarrow X (Al, Cu, Sn, Pb)$
- Hyperon production measured in the central tracker
- Charged particles and nuclear fragments identified with ToF

SRC, exp. run of 2018

 ${}^{12}C + p \rightarrow 2p + {}^{10}_{4}Be + p \text{ (pp SRC)}$ ${}^{12}C + p \rightarrow 2p + {}^{10}_{5}B + n \text{ (np SRC)}$ First exclusive measurement in inverse kinematics probing the residual A-2 nuclear system!

Patsyuk, M., Kahlbow, J., Laskaris, G. et al. Unperturbed inverse kinematics nucleon knockout measurements with a carbon beam. Nat. Phys. 17, 693–699 (2021)

BM@N setup for heavy-ion future program

BM@N Hybrid Central Tracker (stage 1, 2022)

P. Batyuk

PHQMD model, AuAu @ 4A GeV, b = 0-5 fm, 500k events

Conclusion:

- BM@N energy range is very promising (study of EoS, hypernuclei, (multi-)hyperons, collective flow ...).
- BM@N already recorded experimental data from a set of technical runs (2017-carbon, 2018-argon,krypton). Physics analysis of data is in its active phase, results expected to be published.
- Preparation for next experimental runs (detector construction, physics feasibility study according the BM@N physics program ...) is ongoing.
- We expect middle weight ion beams (Xe) to be available with BM@N on spring 2022.

Thank you for your attention!

BACKUP

Collective flow of identified particles

V₂ 0.1

0.05

0

out-of

BM@N energy range

in-plane

- collective flow of identified particles $(\pi, p, K, \Lambda, \Xi, \Omega ...)$ driven by the pressure gradient in the early fireball
- Azimuthal angle distribution:

Cascade reconstruction in Xe + Sn interactions, stage 1 of central tracker

