ПРЕДСТАВЛЕНИЕ

Представляется работа

"Экспериментальное исследование на установке ALICE фемтоскопических корреляций пар заряженных каонов, образующихся в pp, p-Pb и Pb-Pb взаимодействиях при энергиях LHC"

Раздел: Научно-исследовательские экспериментальные работы.

Коллектив соавторов:

- 1. Батюня Б.В.
- 2. Малинина Л.В.
- 3. Михайлов К.Р.
- 4. Рогочая Е.П.
- 5. Романенко Г.Э.

Представленный цикл работ основан на экспериментальных результатах, полученных в период 2010-2020 гг. и опубликованных в следующих восьми журнальных статьях:

- 1. B. Abelev et al. (ALICE Collaboration), "Charged kaon femtoscopic correlations in pp collisions at $\sqrt{s} = 7$ TeV", Phys. Rev. D **87**, 052016 (2013).
- 2. J. Adam et al. (ALICE Collaboration), "One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", Phys. Rev. C **92**, 054908 (2015).
- 3. L. Malinna (for ALICE Collaboration), "Femtoscopy of identified particles in Pb-Pb collisions with ALICE at the LHC", Nucl. Phys. A **00** (2015) 1-4.
- 4. K. Mikhaylov, "Bose-Einstein correlations of charged and neutral kaons in pp and Pb-Pb collisions at the LHC with the ALICE experiment", Journal of Physics: Conference Series **668** (2016) 012071.
- 5. S. Acharya et al. (ALICE Collaboration), "Kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV", Phys. Rev. C **96**, 064613 (2017)
- 6. S. Acharya et al. (ALICE Collaboration), "One-dimensional charged kaon femtoscopy in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV", Phys.Rev. C **100**, 024002 (2019)
- 7. K. Mikhaylov, "Non-identical charged kaon femtoscopy in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV by ALICE", Journal of Physics: Conference Series. **1690**, 012099 (2020).

8. B. Batyunya, L. Malinina, K. Mikhaylov, E. Rogochaya, G. Romanenko, K. Werner, "Identical pion and kaon femtoscopy in EPOS 3 with and without the hadronic afterburner UrQMD", Journal of Physics.: Conference. Series. **1690**, 012102 (2020).

В перечисленных общих публикациях Сотрудничества ALICE (ALICE Collaboration) «Коллектив основных авторов» (Paper Committee) состоял либо полностью из физиков ОИЯИ, либо включал также физиков других институтов в работах [2, 5], где делался совместный анализ.

Представленные результаты докладывались более чем на двадцати конференциях, основные из которых:

- L. Malinina, "Charged KK femtoscopy correlations from 7 TeV pp collisions", poster. International Conference of Quark Matter 2011 (Annecy, France), 23.05-28.05.
- E. Rogochaya, "Kaon femtoscopy correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV from the ALICE experiment at LHC", XXI International Baldin Seminar on High Energy Physics Problem, September 10-15, 2012.
- K. Mikhaylov, "Charged kaon femtoscopy in interactions at $\sqrt{s} = 7$ TeV", XIII GDRE Workshop on Relativistic Heavy Ion Physics, Nantes 2012.
- L. Malinina, "Kaon femtoscopy of Pb-Pb and pp collisions at the LHC with the ALICE", International Conference on New Frontiers in Physics, Crete, 2013.
- L. Malinina, "Correlation femtoscopy with ALICE", International Conference-Section of Nuclear Physics of the Physical Sciences Division of the Russian Academy of Sciences, Moscow, November 2014.
- L. Malinina, "Femtoscopy of identified particles in Pb-Pb collisions with ALICE at the LHC", XXV International Conference of Quark Matter (QM-2015), Kobe, Japan.
- K. Mikhailov (JINR), "Bose-Einstein correlations of charged and neutral kaons in pp and Pb-Pb collisions at LHC with ALICE experiment ", The 15h International Conference on Strangeness in Quark Matter (SQM-2015), Dubna.
- K. Mikhaylov, "Identical and non-identical kaon correlations in pp and Pb-Pb at LHC", GDRE Workshop, Subatech, Nantes, July 2016.
- E. Rogochaya (JINR), "Charged kaon femtoscopy correlations in p-Pb collisions at 5.02 TeV with ALICE at the LHC", XII WPCF, June 2017, Amsterdam.
- K. Mikhaylov, "Non-identical kaon femtoscopy with ALICE experiment", XX GDRE Workshop, Subatech, Nantes, July 2018.
- K. Mikhaylov, "K⁺K⁻ correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV by ALICE at the LHC" XIV WPCF, Dubna, Russia, 2019.
- L. Malinina (JINR, SINP MSU, on behalf of the ALICE Collaboration), "Femtoscopic correlations of identical charged particles in pp collisions at LHC energies with event-shape selection", 5th International Conference on Particle physics and Astrophysics (ICPPA-2020),

October 7, 2020, MEPhI, Moscow.

Кроме того, результаты были включены в различные доклады на семинарах ОИЯИ:

- Б.В. Батюня, «Результаты эксперимента ALICE на ускорителе LHC, CERN", Семинар ВБЛФВЭ, 31.10.2012; Семинар БЛТФ, 19.02.2014; Семинар ОИЯИ, 07.06.2017; Семинар ВБЛФВЭ, 08.02.2019.
- Л.В. Малинина, "Фемтоскопические исследования в столкновениях тяжёлых ионов и протонов с протонами при высоких знергиях", Семинар БЛТФ, 2014.

Введение.

ALICE (A Large Ion Collider Experiment) является многоцелевым экспериментом для исследования взаимодействий главным образом релятивистских тяжёлых ионов, который был создан для изучения физики сильно взаимодействующей материи, кварк-глюонной плазмы (КГП), в ядро-ядерных столкновениях на ускорителе LHC в CERN. Кроме основного направления, осуществляется обширная программа исследования протон-протонных и протон-ядерных столкновений прежде всего для сравнения с результатами столкновения тяжёлых ионов.

Ещё в начале 80-х годов прошлого столетия было высказано предположение [9], что экстремально высокие плотности энергии, достигаемые в столкновениях тяжёлых ядер (А-А), могут приводить к образованию КГП – состоянию материи, в котором кварки, будучи связанными в обычном веществе в более сложные частицы, освобождаются и двигаются свободно по всему объёму (quark deconfinement). Спустя двадцать лет, в 2000-м году на специальном семинаре в CERN по результатам совокупности данных, полученных в нескольких экспериментах на ускорителе SPS, были представлены весьма убедительные свидетельства существования такого состояния материи. При этом предполагалось [10], что при достигнутых энергиях наблюдаются локальные образования КГП в состоянии смешанной кварк-адронной фазы. Достижение же полного состояния КГП может произойти при более плотной энергии столкновений с увеличением энергии ускорителей, что должно привести к усилению сигналов, указывающих на образование КГП.

В рамках гидродинамических моделей возникающая в результате А-А столкновения сжатая сильно взаимодействующая система подвергается продольному и поперечному расширению, определяющему размеры источника излучения наблюдаемых частиц. Экспериментально пространственные и временные размеры таких источников могут быть измерены через корреляции Бозе-Эйнштейна для пар тождественных частиц [11, 12] или через корреляции пар нетождественных частиц за счёт взаимодействий в конечном состоянии [13]. В настоящее время эти корреляции принято называть фемтоскопическими (НВТ корреляции в ранних работах). Группа ОИЯИ приняла широкое участие в этих исследованиях, главным образом пар заряженных каонов, образующихся в pp, p-Pb и Pb-Pb столкновениях. Подобный выбор был обусловлен прежде всего традиционным интересом физиков ОИЯИ к этому направлению, началом которого послужили «пионерские» работы 70-х годов прошлого столетия теоретиков ОИЯИ Г.И. Копылова и М.И. Подгорецкого [12]. В дальнейшем теоретическом развитии приняли широкое участие физики ОИЯИ В.Л. Любошиц и Р. Ледницки [13], последний из которых в настоящее время является одним из самых известных специалистов в мире в этой области. Вторая причина выбора каонного анализа связана с относительно небольшим количеством таких результатов по сравнению с многочисленными данными по исследованию пар пионов при различных энергиях. Например, результаты изучения пар заряженных каонов в рр и р-А столкновениях при более низких энергиях вообще отсутствовали вследствие скорее всего недостаточной статистики каонов с хорошей идентификацией. Наконец ещё одним

преимуществом исследования каонных пар по сравнению с пионными является более слабое влияние распадов резонансов, которые в данном случае относятся к фоновым процессам.

1. Исследование фемтоскопических корреляций заряженных каонов в pp взаимодействиях при энергии $\sqrt{s} = 7$ TeV [1].

В этом исследовании было проанализировано примерно 300 млн. событий, полученных при столкновении протонов на LHC в 2010 году. Достаточно подробно описание детекторов и методика отбора событий, отбора и реконструкции треков частиц и идентификации частиц описана в работе [1]. Здесь кратко отметим, что отбор событий по триггеру был минимальным (minimum-bias) с проверкой только принадлежности к pp столкновению. Реконструкция треков делалась с использованием внутренней трековой системы кремниевых детекторов и временипроекционной камеры (ВПК), и далее параметры треков находились методом Кальманфильтра. Необходимая эффективность идентификации каонов была получена с помощью измерения для частиц разного типа энергетических потерь в ВПК и времени пролета во времени-пролётном детекторе (ВПД). Чистота выделения каонов (отношение правильно идентифицированных ко всем) определялась методом Монте-Карло моделирования с использованием детальной симуляции детекторов и генераторов исследуемого типа Анализ экспериментальных и моделированных данных производился в взаимодействий. рамках принятого в ALICE пакета программного обеспечения ALIROOT. На Рис. 1 показана зависимость чистоты (purity) выделения каонов и доли примеси (contamination) от пионов и электронов от поперечного импульса каонов в ВПК (при $p_T < 0.6 \text{ GeV}/c$) и в ВПД (при $p_T > 0.6$ GeV/c). Видно, что наибольшая примесь появляется от электронов в интервале $p_{\rm T}$ (0,35-0,6) GeV/c. Такого же порядка оценивалась примесь при выделении пар каонов. Нужно отметить, что указанная примесь уменьшает только силу корреляции и не влияет на форму корреляционной функции. Корреляционная функция определялась через отношение CF(**p**₁,**p**₂) $= A(p_1, p_2)/B(p_1, p_2)$, где $A(p_1, p_2)$ - двухчастичное распределение в данном событии и $B(p_1, p_2)$ опорное распределение, построенное смешиванием частиц из разных событий, p_1 , p_2 - векторы импульсов двух частиц. Корреляционная функция обычно представляется в зависимости от инвариантной величины $q_{inv} = (|\mathbf{q}|^2 - q_0^2)^{1/2}, \mathbf{q} = \mathbf{p}_1 - \mathbf{p}_2, q_0 = \mathbf{E}_1 - \mathbf{E}_2.$

Рис. 1: Чистота (purity) и примесь (contamination) при выделении заряженных каонов в Монте-Карло моделировании.

Рис. 2: Корреляционные функции пар заряженных каонов в рр столкновениях.

Эти функции показаны чёрными кружками на Рис. 2 для событий разных множественностей

 N_{ch} заряженных частиц и разных интервалов половины поперечного импульса пары $k_{T} = |\mathbf{p}_{T,1} + \mathbf{p}_{T,2}|/2$. Синими кружками показаны функции, полученные с использованием Монте-Карло генератора PYTHIA-PERUGIA-2011. Приведённые функции нормированы на единицу при $q_{inv} > 0,5$ GeV/c вне области пика корреляционного эффекта. Результаты получены для суммы пар положительных и отрицательных каонов, корреляционные функции для которых совпадают в пределах ошибок. Видно, что при $q_{inv} > 0,5$ GeV/c экспериментальные данные хорошо описываются моделью, в которой фемтоскопический эффект отсутствует, но наблюдается рост корреляционной функции с увеличением k_{T} при малых q_{inv} , который предположительно обусловлен влиянием мини-джетов. Корреляционная функция фитировалась одномерной функцией Гаусса [14]:

$$CF(q_{inv}) = \{1 - \lambda + \lambda K(q_{inv}) [1 + \exp(-R^2 q_{inv}^2)]\} \cdot D(q_{inv}), \quad (1)$$

где параметры λ и R_{inv} отображают соответственно силу корреляции и радиус источника излучения каонов, $K(q_{inv})$ – кулоновская функция. Функция $D(q_{inv})$ описывает так называемую базовую линию (baseline), которая учитывает все нефемтоскопические корреляции, в том числе упомянутые выше мини-джеты и долгодействующие корреляции, обусловленные законом сохранения энергии-импульса. Результаты фитирования формулой (1) показаны на Рис. 2 красными кривыми. При этом базовая (синяя) линия была получена фитированием модельных данных полиномом второй степени.

Рис. 3: Радиусы источников излучения частиц в зависимости от *m*_T для разных множественностей событий.

Рис. 4: Чистота идентификации пар заряженных каонов в зависимости от *k*_T в Pb-Pb событиях различных центральностей.

На Рис. 3 приведены зависимости R_{inv} от поперечной массы пары $m_T = (k_T^2 + m_K^2)^{1/2}$ с учётом статистических и систематических ошибок, обсуждение которых здесь и для следующих рисунков делается в оригинальных статьях. Как отмечалось выше, такие данные для заряженных каонов были получены в pp столкновениях впервые, поэтому сравнение делалось с результатами, полученными в ALICE при таких же энергиях для пар заряженных пионов [15] и нейтральных каонов ($K_s^0 K_s^0$) [16], показанных также на Рис. 3. Из этого рисунка видно, что R_{inv} растут с ростом N_{ch} для пар всех типов. С ростом m_T и при $N_{ch} > 11$ наблюдается регулярное падение R_{inv} , но при меньших N_{ch} вместо падения для заряженных мезонов виден рост радиусов, который количественно сильнее для каонных пар. Здесь интересно отметить, что падение R_{inv}

в А-А столкновениях объясняется проявлением сильного коллективного гидродинамического расширения в образующейся материи [17]. Подобное падение R_{inv} в pp столкновениях также связывают с возможным влиянием гидродинамической фазы, вклад которой очень мал при малых величинах N_{ch}[18]. Нужно отметить, что возможное проявление коллективных эффектов при образовании малых систем в pp и p-Pb столкновениях с ростом множественности заряженных частиц обсуждается также на основании таких наблюдений, как "ridge" эффект (CMS, LHC) [19] и увеличение выхода странных частиц с ростом множественности событий (ALICE) [20]. Из Рис. 3 также видно, что R_{inv} больше для каонов чем для пионов при одинаковых m_T и N_{ch} > 11. Согласно модели [21] такое превышение может быть обусловлено меньшим влиянием потоков резонансов для каонов, чем для пионов.

Как указывалось, параметр λ в формуле (1) отражает силу корреляции. Величина λ равна единице в идеальном случае и всегда меньше в реальном анализе. К возможным причинам можно отнести: частичную когерентность источников излучения частиц [22], вклад частиц от распадов долгоживущих резонансов, отклонение от гауссовской параметризации корреляционной функции, частично ошибочную идентификацию частиц. В данном анализе значение λ варьировалось в интервале (0,3-0,5).

2. Исследование фемтоскопических корреляций заряженных каонов в Pb-Pb взаимодействиях.

В конце 80-х, в 90-е годы прошлого века были сделаны предсказания в рамках гидродинамических моделей [23, 24] о значительном увеличении пространственно-временных размеров образующегося файрбола (источника излучения частиц) в А-А столкновениях из-за влияния КГП при энергиях на ускорителях RHIC и LHC. Однако это предсказание не оправдалось, что получило название «HBT puzzle» [25]. Решение проблемы было получено при дальнейшем развитии моделей [26-28] с учётом таких факторов, как поперечные потоки частиц на первоначальной стадии взаимодействий, переход от КГП к адронной фазе через механизм «crossover», фаза адронного каскада. Рождение каонов было также интересно сравнением радиусов их источников излучения с источниками других частиц, в том числе проверкой предсказанной в [29, 30] универсальной зависимости радиусов для различных частиц от величины $m_{\rm T}$ (так называемого $m_{\rm T}$ -скейлинга).

2.1. Одномерный анализ фемтоскопических корреляций пар заряженных каонов в Pb-Pb взаимодействиях при энергии $\sqrt{s_{NN}} = 2,76$ TeV [2, 4].

Указанный в заголовке анализ проводился совместно с другими группами для сравнения фемтоскопических параметров заряженных каонов с параметрами других частиц. Методика отбора событий и частиц была аналогичной той, которая описана в Разделе 1. Отличным был только метод идентификации каонов в ВПК, который заключался в фитировании экспериментальных распределений энергетических потерь частиц тройной функцией Гаусса в различных интервалах импульса для отделения каонных сигналов от сигналов электронов и пионов. Чистота идентификации каонных пар в зависимости от k_T приведена на Рис. 4 и была определена с использованием чистот одиночных каонов, показанных на рисунке 1 в работе [4]. Такой метод позволил определить точнее чистоту выделения каонов и примесь, которая, как и в случае рр столкновений, определялась большей частью вкладом электронов. Корреляционные функции были скорректированы с учётом импульсного разрешения частиц методом, описанным в [2]. На Рис. 5 приведён пример корреляционной функции с ошибками, которые обусловлены большей частью систематическими неопределённостями. Кривая – результат фитирования формулой (1), в которой функция $D(q_{inv})$ равнялась единице. На Рис. 6 показаны радиусы источников для пар разных частиц в зависимости от *<m*_T> для событий разных центральностей. Видно, что радиусы увеличиваются для более центральных событий, что

ожидается из простой геометрической картины столкновений частиц. Очевиден эффект уменьшения радиусов с ростом $\langle m_T \rangle$, который обсуждался в Разделе 1. Наблюдается также упомянутый выше m_T -скейлинг для пар каонов и протонов/антипротонов в пределах ошибок.

(fm) ALICE Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ _≧ ⊆ 10-30% 30-50% ¢ 8 $K^{\pm} K^{\pm}$ $K_{\rm S}^0$ K_{S}^{0} ∇ Δ pp 6 4 2 1.6 1.8 $\langle m_{\tau} \rangle$ (GeV/ c^2) 0.6 0.8 0.2 0.4 1 1.2 1.4

Рис. 5: Корреляционная функция пар заряженных каонов. Кривая — результат фитирования формулой (1).

Рис. 6: Радиусы источников излучения частиц в зависимости от *<m*_T> для событий разных центральностей.

Нарушение *m*_T-скейлинга для пар пионов может быть объяснено [30] увеличением Лоренцфактора с уменьшением массы частиц при переходе из системы LCMS (Longitudinally Co-Moving System), для которой сделано предсказание, в систему покоя пары PRF (Pair Rest Frame), в которой делается анализ.

2.2. Трёхмерный анализ фемтоскопических корреляций пар заряженных каонов в Pb-Pb взаимодействиях при энергии $\sqrt{s_{NN}} = 2,76$ TeV [3, 5].

Трёхмерный анализ фемтоскопических корреляций позволяет более детально изучать три компоненты радиуса источника испускания частиц, т. е. фактически пространственную форму источника. В этом анализе главное внимание уделялось проверке механизмов образования частиц, рассматриваемых в различных моделях с точки зрения выполнения или нарушения $m_{\rm T}$ -скейлинга, который обсуждался в Подразделе 2.1. Экспериментальная методика в данном анализе была такой же, как и в одномерном анализе, рассмотренном выше. Корреляционная функция в трехмерном анализе представляется зависящей от трёх компонент переменной q (указанной в Разделе 1), которые вычисляются в системе LCMS, где продольный импульс пары зануляется и определяются компоненты $q_{\rm out}$, $q_{\rm side}$, $q_{\rm long}$ с осями: «long» - вдоль пучка, «out» - вдоль поперечного импульса пары, «side» - перпендикулярной последней в поперечной плоскости. Корреляционная функция фитировалась формулой [14]:

$$C(\mathbf{q}) = N(1 - \lambda) + N\lambda K(q) [1 + \exp(-R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{side}}^2 q_{\text{side}}^2 - R_{\text{long}}^2 q_{\text{long}}^2)],$$
(2)

где R_{out} , R_{side} , R_{long} – гауссовские фемтоскопические радиусы в системе LCMS, N – нормировочный параметр и q определялась в системе покоя пары. Параметр λ и функция K(q), как и в формуле (1), описывают, соответственно, силу корреляции и кулоновское

Рис. 7: Зависимость трёх компонент радиусов И отношение радиусов В поперечной плоскости источников испускания пионов и каонов в зависимости от средней поперечной массы пар Кривые частиц $< m_{\rm T} >$. результат предсказания модели НКМ с учётом (w rescatt) и без учёта (w/o rescatt) перерассеяния частиц на стадии адронной фазы.

функций на оси «out», «side», «long» в зависимости, Проекции корреляционных соответственно, от q_{out} , q_{side} , q_{long} показаны на рисунке 2 в работе [5], где также приведены результаты фитирования формулой (2). На Рис. 7 данного представления приведены полученные при таком фитировании значения R_{out} , R_{side} , R_{long} и отношения R_{out}/R_{side} в зависимости от <m_T> для пионов и каонов (заряженных и нейтральных), образующихся в наиболее центральных Pb-Pb столкновениях (0-5%). Видно, что радиусы для каонов заметно больше, чем для пионов при одинаковых значениях *m*_T, т. е. *m*_T-скейлинг не выполняется. Линии на рисунках показывают результаты предсказания гидрокинетической модели (НКМ) [31] с включением (w rescatt) или без включения (w/o rescatt) перерассеяния частиц в конечном состоянии. С точки зрения физической картины второй случай (ранняя версия модели) предусматривает мгновенный переход из КГП к конечному состоянию, когда свободные частицы регистрируются в детекторах. При этом модель не описывает (пунктирные линии) нарушения *m*_T-скейлинга. Такой же результат получается в другой подобной модели (THERMINATOR-2) [30], что видно из рисунка 4 в работе [5]. Учёт перерассеяния адронов перед свободным вылетом частиц приводит к согласию с экспериментальными данными (сплошные линии на Рис. 7). Такие же результаты были получены (показаны на рисунке 2 в [8]) при сравнении с другой гидродинамической моделью EPOS-3, которая отличается от НКМ некоторыми деталями первоначальных условий взаимодействия частиц, описываемых в рамках подхода Монте-Карло-Глаубера в НКМ и партонной картиной рассеяния Грибова-Редже в EPOS-3. Эти результаты сравнения с моделями демонстрируют важность учёта перерассеяния частиц в конечном состоянии адронизации. Из Рис. 7 видно, что отношения R_{out}/R_{side} близки к единице. Хорошее описание этого отношения в моделях, как и радиусов источников, стало возможным также при рассмотрении первоначальной стадии взаимодействия ядер до наступления теплового равновесия и далее предтермализованной стадии с переходом к термализованной равновесной КГП. Важным параметром сильно взаимодействующей КГП как горячей и плотной жидкости является отношение n/s, где n – вязкость и s – плотность энтропии. Малая величина $\eta/s \ge 1/(4\pi)$ указывает на достижение состояния КГП, что действительно

наблюдается в ALICE при описании поперечных потоков частиц в модели HKM (η /s = 0,08 \div 0,2) [28].

Рис. 8: Зависимость R_{long}^2 от $<m_T>$ для каонов и пионов. Сплошные линии показывают результаты фитирования формулой (3) при определении максимального времени эмиссии частиц (τ_{max}). Смысл штриховых и точечных линий пояснен в тексте. Т – значения температуры в моделях.

Несколько большее значение R_{out}/R_{side} для каонов, чем для пионов указывает на большую продолжительность времени эмиссии каонов. Для определения максимального времени эмиссии τ_{max} была использована формула, предложенная в работе [32]:

$$R_{\rm long}^2 = \tau_{\rm max}^2 \frac{T_{\rm max}}{m_{\rm T}\cosh y_{\rm T}} \left(1 + \frac{3T_{\rm max}}{2m_{\rm T}\cosh y_{\rm T}}\right),\tag{3}$$

где T_{max} – температура, и остальные параметры пояснены в работе [5] для формулы (9). Результаты фитирования формулой (3) зависимостей R_{long}^2 от $\langle m_T \rangle$ приведены на Рис. 8 сплошными линиями для каонов и пионов с хорошим согласием с экспериментальными данными. Значения τ_{max} оказались равными 12,40 ± 0,04 fm/c и 9,44 ± 0,02 fm/c соответственно для каонов и пионов, что подтверждает более продолжительную каонную эмиссию. Пунктирные и точечные линии на Рис. 8 являются результатами фитирования формулой (8), приведенной в работе [5] и используемой в более ранней публикации ALICE по изучению корреляций пионных пар [33]. Видно, что такое фитирование приводит к результатам для каонов заметно отличным от экспериментальных. Наблюдаемая разница τ_{max} для каонов и пионов может быть причиной нарушения m_T -скейлинга, обсуждаемого выше. В работе [32] эта разница объясняется влиянием резонансов K^{*}(892) со временем жизни 4÷5 fm/c, образующихся в процессе перерассеяния адронов в конечном состоянии и распадающихся на заряженные каоны и пионы, при этом каоны от распадов составляют до 30% от всех рожденных при столкновении ядер.

2.3. Одномерный анализ фемтоскопических корреляций пар нетождественных каонов (K⁺K⁻) в Pb-Pb взаимодействиях при энергии $\sqrt{s_{NN}} = 2,76$ TeV [7].

Как отмечалось выше, размеры источников испускания частиц могут быть определены через корреляции пар нетождественных частиц за счёт их взаимодействий в конечном состоянии [13, 34]. Теоретическая корреляционная функция пар K^+K^- с относительным импульсом k^* в системе покоя пары (PRF) и с полным импульсом (вектором) **Р** может быть записана в виде:

$$C_{sFSI}(\mathbf{k}^*, \mathbf{P}) = \int \mathrm{d}^3 \mathbf{r}^* S^{\alpha}(\mathbf{r}^*, \mathbf{P}) \sum_{\alpha'} \left| \psi_{-\mathbf{k}^*}^{\alpha'\alpha}(\mathbf{r}^*) \right|^2, \tag{4}$$

где \mathbf{r}^* - относительное расстояние между точками испускания частиц в системе покоя пары. Функция источника в одномерном анализе выбирается в гауссовском виде с шириной Гаусса $R: S(\mathbf{r}^*) \sim \exp(-\mathbf{r}^{*2}/4R^2)$. Индекс а обозначает канал К⁺К⁻, и индекс а' – промежуточные каналы К⁺К⁻, К⁰К⁰. Волновая функция пары каонов представляется в виде суперпозиции плоской и сферической волн: $\psi_{-k^*}(r^*) = \exp(-ik^*r^*) + f(k^*)\exp(ik^*r^*)/r^*$. Амплитуда рассеяния $f(k^*)$ пары $K^+K^$ определяется s-волной изоскалярного и изовекторного резонансов f₀(980) и a₀(980), соответственно, образующихся вблизи порога, и может быть записана в виде суммы $f(k^*)$ = $[f_0(k^*) + f_1(k^*)]/2$, где первый и второй члены относятся, соответственно, к резонансам f_0 (с изоспином 0) и a_0 (с изоспином 1). Аналитический вид функций $f_0(k^*)$ и $f_1(k^*)$ представлен в работе [7] формулами (4) и (5) в зависимости от масс резонансов $f_0(980)$, $a_0(980)$ и их констант связи с различными каналами распадов. При определении C_{sFSI} учитывается также кулоновское взаимодействие заряженных частиц [13] и вклад р-волны сильного взаимодействия через образование резонанса φ(1020) [35]. Экспериментально корреляционные функции определялись так же, как указано в Разделе 1, и в качестве примера приведены на Рис. 9 для событий разных центральностей в интервале $k_{\rm T} = (0,3 \div 0,4) \, {\rm GeV}/c$.

Рис. 9: Корреляционные функции пар К⁺К⁻ для событий разных центральностей.

Рис. 10: Радиусы источников излучения каонов в зависимости от $k_{\rm T}$ для событий разных центральностей.

Основные особенности корреляционных функций следующие: максимум от кулоновской силы притяжения при очень малых q < 0,05 GeV/c, минимум при $q \sim 0,05$ GeV/c от вкладов резонансов $f_0(980)$ и $a_0(980)$, и $\phi(1020)$ мезонный пик вокруг q = 0,25 GeV/c. Красная линия на Рис. 9 является результатом фитирования с помощью численно рассчитанной теоретической корреляционной функции, рассмотренной выше. При этом параметры резонанса $a_0(980)$ были взяты из модели [36] на основании выбора, сделанного ранее в работах ALICE [37] (Achasov2 в таблице 1 в [7]). Параметры резонанса $f_0(980)$ выбирались (как свободные) с условием близости значений полученных фемтоскопических радиусов значениям найденным в ALICE при анализе пар тождественных заряженных каонов [2], согласно предсказаниям теоретических моделей. На Рис. 10 приведены фемтоскопические радиусы, полученные при фитировании в зависимости от k_T для событий разных центральностей. Здесь же для сравнения показаны радиусы, найденные при изучении пар тождественных каонов (К[±]K[±] на рисунке). Видно хорошее соответствие радиусов, полученных в разных анализах. В результате фитирования

были найдены [7] следующие значения параметров резонанса $f_0(980)$: масса m = 972 ± 3 ± 5 MeV/ c^2 и ширина Γ = 39,7 ± 7,94 ± 11,8 MeV, которые соответствуют табличным значениям (PDG).

3. Одномерный анализ фемтоскопических корреляций пар тождественных заряженных каонов в p-Pb взаимодействиях при энергии $\sqrt{s_{\rm NN}} = 5,02$ TeV [6].

Исследование фемтоскопических корреляций в p-A столкновениях вызывает интерес прежде всего тем, что такой тип взаимодействий является промежуточным между pp и A-A с точки зрения влияния механизмов гидродинамики на размер источника испускания частиц. В одной из первых теоретических работ в рамках 3+1 гидродинамической картины [38] предсказывалось сильное влияние этих механизмов в p-Pb столкновениях при энергии LHC, приводящих к заметному увеличению размеров источников испускания частиц по сравнению с pp взаимодействиями. Предсказание такой же разницы, хотя и в меньшей степени, было сделано авторами упомянутой выше модели HKM [39]. Результаты изучения пионных корреляций показали, что в одномерном анализе радиусы источников в p-Pb и pp взаимодействиях совпадают в пределах ошибок [40], а в трехмерном анализе тоже близки, хотя и с некоторым отличием для разных компонент [41]. Безусловный интерес представляли подобные исследования корреляций более тяжёлых каонов, которые были выполнены впервые для p-A столкновений группой ОИЯИ.

Для проведения анализа была использована максимальная статистика (~55 млн.) p-Pb взаимодействий при энергии 5,02 TeV, полученная в 2013 году. Экспериментальная методика и метод проведения анализа были такими же, как и в выше рассмотренных разделах, и детальнее представлены в работе [6]. На Рис. 11 приведены R_{inv} источников испускания каонов в зависимости от k_T для событий разных центральностей.

Рис. 11: Радиусы источников испускания каонов в зависимости от $k_{\rm T}$ для событий разных центральностей. Для сравнения приведены результаты, полученные в модели EPOS с учётом (w/casc) и без учёта (w/o casc) каскадных перерассеяний адронов в конечном состоянии взаимодействий.

Для сравнения приведены результаты, полученные в модели EPOS с учётом (w/casc) и без учёта (w/o casc) каскадных перерассеяний адронов в конечном состоянии взаимодействий. Видно, как и в случае Pb-Pb столкновений (Puc. 7), учёт перерассеяния адронов перед свободным вылетом частиц приводит к согласию предсказаний модели с экспериментальными данными. На Puc. 12 сравниваются зависимости радиусов источников испускания K^{\pm} от средней множественности заряженных частиц $\langle N_{ch} \rangle$ для различных типов взаимодействий. На левом рисунке результаты взяты из работы [6], где для сравнения использовались данные, полученные для Pb-Pb столкновений при энергии $\sqrt{s_{NN}} = 2,76$ TeV. Из этого рисунка видно, что при одинаковых значениях $\langle N_{ch} \rangle$ радиусы, найденные для pp и p-Pb взаимодействий, совпадают в

пределах ошибок. Это соответствует результатам, полученным для пионов, и позволяет сделать вывод, что утверждение упомянутых выше моделей о значительно более сильном влиянии механизмов гидродинамики в p-Pb, чем в pp взаимодействиях не подтверждается.

Рис. 12: Радиусы источников испускания K^{\pm} в зависимости от средней множественности заряженных частиц для различных типов взаимодействий. На левом рисунке результаты взяты из работы [6], на правом рисунке добавлены результаты, полученные для Pb-Pb столкновений при энергии $\sqrt{s_{NN}} = 5,02$ TeV.

Из левого рисунка также видно, что корректного сравнения с результатами Pb-Pb столкновений сделано быть не может, поскольку недостаточная статистика не позволила получить радиусы при низких N_{ch}, что отмечено в выводах работы [6]. Но такое сравнение стало возможным для Pb-Pb столкновений при энергии $\sqrt{s_{NN}} = 5,02$ TeV (правый рисунок), полученными позднее при гораздо большей статистике. Значения радиусов, предварительно полученные для этого типа взаимодействий, добавлены на правом Puc. 12. Эти результаты были включены в дипломную работу магистра МГУ Романенко Г.Э. (соавтора данного представления) и в его доклады на внутренних совещаниях ALICE. Из рисунка видно, что новое значение R_{inv} при одинаковом N_{ch} практически совпадает, с учётом ошибок, с радиусом, найденным для p-Pb столкновений, и значения для всех типов взаимодействий (за исключением Pb-Pb при 2,76 TeV) хорошо ложатся на одну линию – результат фитирования линейной функцией. Некоторое отличие результатов для Pb-Pb при 2,76 TeV не представляется достаточно значимым с учётом ошибок, поскольку при отдельном фитировании этих значений функцией f(x)=ax+b были получены величины параметров a = 0,47 ± 0,13, b = 0,67 ± 1,07, которые совпадали в пределах ошибок с параметрами общего фита, равными, соответственно, 0,42 ± 0,02 и 0,36 ± 0,18.

Заключение.

В представленном цикле работ впервые исследовались фемтоскопические корреляции пар заряженных каонов, образующихся в pp, p-Pb и Pb-Pb столкновениях при энергиях LHC. При этом во взаимодействиях протонов с протонами и протонов с ядрами такие исследования не делались никогда, даже при более низких энергиях. Был получен ряд новых результатов, которые кратко можно сформулировать следующим образом:

– При взаимодействии протонов с протонами наблюдалось значительное отличие в поведении радиусов источников испускания каонов в событиях с низкой и высокой множественностью заряженных частиц. Это отличие подтверждало результат, ранее полученный при исследовании заряженных пионов. – Предсказанный теоретически *m*т-скейлинг для частиц различных типов наблюдался в Pb-Pb столкновениях для пар каонов и протонов (антипротонов), но при сравнении пар пионов и каонов было заметно его нарушение. Последнее было объяснено в рамках гидрокинетических моделей (HKM и EPOS) с добавлением механизма перерассеяния адронов в конечной стадии взаимодействия.

– Измеренное в рамках модели НКМ время эмиссии каонов превышало соответствующее время, найденное для пионов, что объяснялось влиянием разных резонансов при рождении этих частиц и согласовывалось с наблюдаемым нарушением *m*т-скейлинга.

– При исследовании в Pb-Pb взаимодействиях корреляций К⁺К⁻ благодаря взаимодействиям в конечном состоянии были уточнены параметры сильного взаимодействия при переходе K⁺K⁻→f₀ с использованием ожидаемого совпадения размеров источников испускания пар тождественных и нетождественных каонов. При этом полученные масса и ширина f₀ соответствуют табличным значениям PDG.

– Изучение корреляций пар K^{\pm} в p-Pb столкновениях показало, что для правильного описания радиусов источников в модели EPOS, как и для Pb-Pb взаимодействий, важен учёт механизма перерассеяния адронов в конечном состоянии. Кроме того, из сравнения величин полученных радиусов с найденными для pp и Pb-Pb столкновений можно сделать вывод, что при одинаковой множественности заряженных частиц значения радиусов близки во всех трёх типах взаимодействий. Этот результат несколько отличен от полученного ранее при изучении образования π^{\pm} и требует дальнейшего исследования в рамках теоретических моделей.

– Все приведённые результаты показывают, что свойства фемтоскопических корреляций рассмотренных частиц, образующихся при столкновениях тяжёлых ядер, достаточно хорошо описываются гидродинамическими моделями при рассмотрении нескольких стадий взаимодействия ядер: первоначальной – до наступления теплового равновесия, предтермализованной стадии с переходом к термализованной равновесной кварк-глюонной плазме, стадии адронизации с учётом перерассеяния частиц в конечном состоянии. Для взаимодействий рр и р-Рb предсказания моделей не столь однозначны и требуют дальнейшего понимания прежде всего влияния вклада гидродинамических механизмов в эти процессы.

Литература.

- 9. E.V. Shuryak E.V. Phys. Rep. 61 (1980) 71-158.
- 10. S. Digal S. et al. Phys. Lett. B 549 (2002) 101-108.
- 11. S. Goldhaber et al. Phys.Rev 120 (1960) 300-3.
- 12. G. Kopylov, M. Podgoretsky. Sov. J. Nucl. Phys. 15 (1972) 219-223.
- 13. R. Lednicky, V. Lyuboshits. Sov. J. Nucl. Phys. 35 (1982) 770.
- 14. M.G. Bowler. Phys. Lett. B270, (1991) 69.; Y. Sinyukov et al. Phys.Lett. B432 (1998) 248.
- 15. K. Aamodt et al. (ALICE Collaboration), Phys. Rev. D84 (2011) 112004.
- 16. B. Abelev et al. (ALICE Collaboration), Phys. Lett B 717 (2012) 151.
- 17. S.Pratt. Phys. ReV. Lett. 53 (1984) 1219; M. Lisa et al. Annu. Rep. Nucl. Part. Sci. 55 (2005) 357.
- 18. K. Werner at al. Phys. Rev. C 83 (2011) 044915.
- 19. V. Khachatryan V. et al. (CMS Collaboration), JHEP 09 (2010) 091.
- 20. J. Adam et al. (ALICE Collaboration), Nature Phys. 13 (2017) 535-539.
- 21. T.J. Humanic. J. Phys. G 38 (2011) 124058.

- 22. S. Akkelin et al. Phys. Rev. C 65 (2002) 064904; B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 89 (2014) 024911.
- 23. D.H. Rischke and M. Gyulessy. Nucl. Phys. A 608 (1996) 479.
- 24. D.H. Rischke. Nucl. Phys. A 610 (1996) 88c.
- 25. J. Adams et al. (STAR Collaboration), Phys. Rev. C71 (2005) 044906.
- 26. Iu.A. Karpenko, Yu.M. Sinyukov. Phys. Part. Nucl. Lett. 8 (2011) 9, 981.
- 27. J. Vredevoogd and S. Pratt. Nucl. Phys. A 830 (2009) 515C.
- 28. V. Yu. Naboka et al. Phys. Rev. C93 (2016) 024902.
- 29. M. A. Lisa et al. Ann. Rep. Nucl. Part. Sci. 55 (2005) 357.
- 30. A. Kisiel et al. Phys. Rev. C 90 (2014) 064914.
- 31. V.M. Shapoval et al. Nucl. Phys. A 929 (2014) 1.
- 32. Yu. M. Sinyukov et al. Nucl. Phys. A 946 (2016) 227.
- 33. K. Aamodt et al. (ALICE Collaboration), Phys. Lett. B696 (2011) 328.
- 34. R. Lednicky et al. Phys. Atom. Nucl. 61 (1998) 2050; S. Bekele and R. Lednicky. Braz. J. Phys. 37 (2007) 994.
- 35. R. Lednicky. Part. Nucl. Lett. 8 (2011) 965.
- 36. N. Achasov and A. Kiselev. Phys. Rev. D 68 (2003) 014006.
- S. Acharya et al. (ALICE Collaboration), Phys. Lett. B774 (2017) 64; Phys. Lett. B790 (2019) 22.
- 38. P. Bozek and W. Broniowski. Phys. Lett. B 720 (2013) 250.
- 39. V. Shapoval et al. Phys. Lett. B 725 (2013) 139.
- 40. B. Abelev et al. (ALICE Collaboration), Phys. Lett B 739 (2014) 139.
- 41. J. Adam et al. (ALICE Collaboration), Phys. Rev. C 91 (2015) 034906.