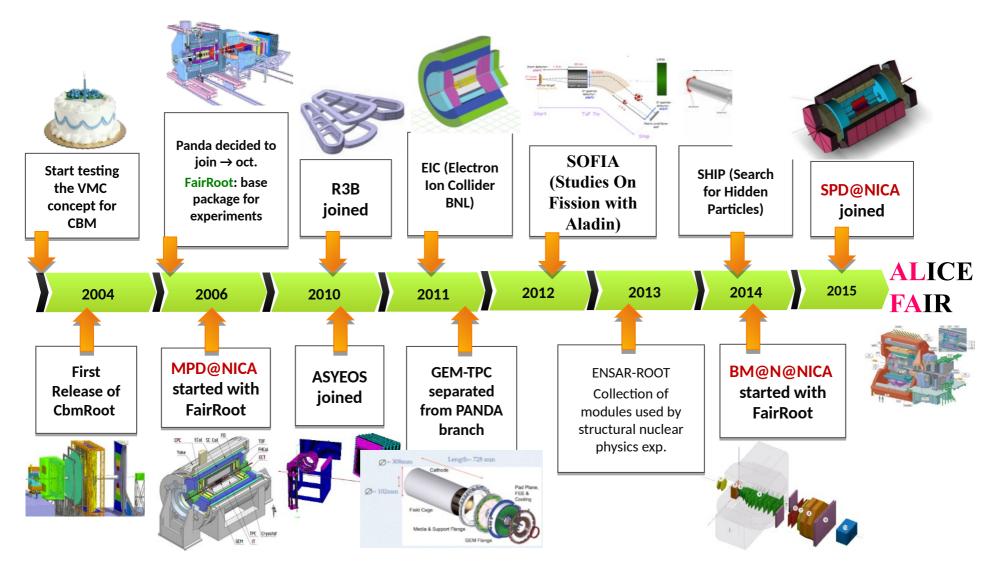

Software development & computing for MPD

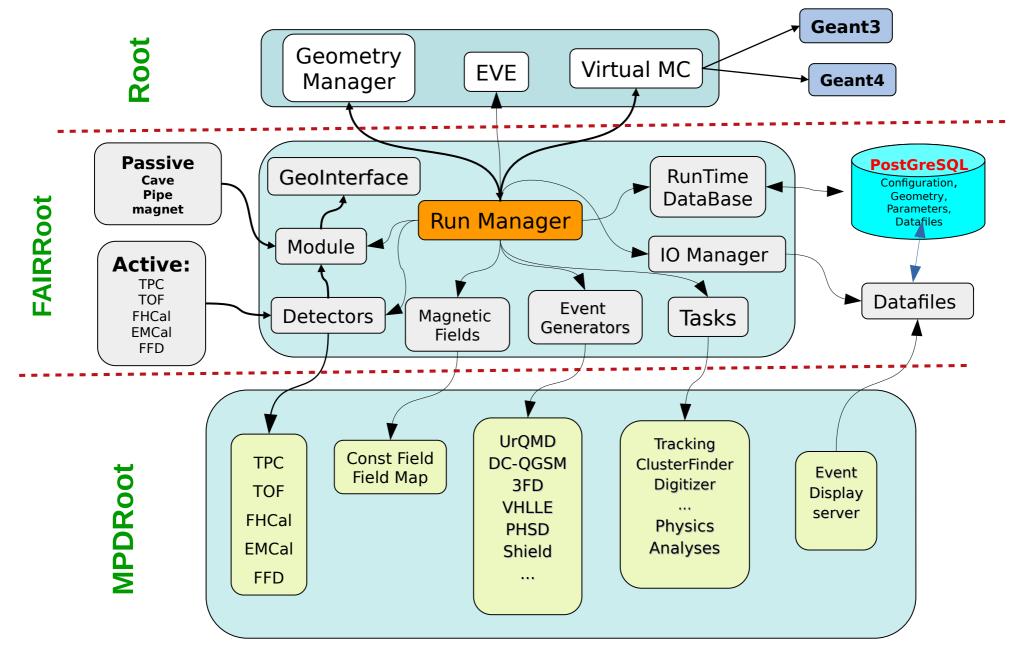
Rogachevsky Oleg for MPD collaboration rogachevsky@jinr.ru

VIII MPD collaboration meeting 13.10.2021 Dubna

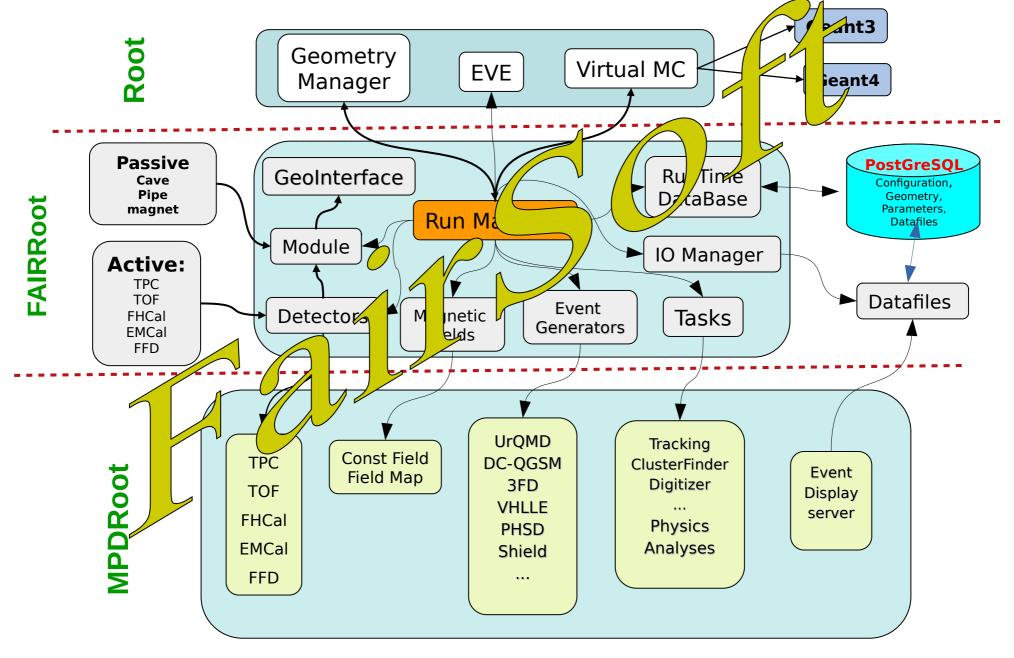

Nuclotron based Ion Collider fAcility

- Beams: from p to Au⁷⁹⁺
- ✓ Luminosity: $10^{27} cm^{-2} s^{-1}$ (Au), 10^{32} (p[↑])
- Collision energy: $\sqrt{S_{NN}} = 4 11 \text{ Gev } E_{lab} = 1 6 \text{ AGev}$

MpdRoot history



- 2007 Letter of Intent
- **2014** Conceptual Design Report
- 2015 ... Detectors TDRs


MpdRoot structure

MpdRoot structure

FairSoft

Latest release apr21

Included packages

Package	Version	URL
boost	1.75.0	https://www.boost.org/
clhep	2.4.4.0	http://proj-clhep.web.cern.ch
dds	3.5.10	http://dds.gsi.de
fairlogger	1.9.2	https://github.com/FairRootGroup/FairLogger
fairmq	1.4.33	https://github.com/FairRootGroup/FairMQ
flatbuffers	1.12.0	https://github.com/google/flatbuffers
fmt	6.1.2	https://github.com/fmtlib/fmt
geant3	3-8_fairsoft	https://github.com/FairRootGroup/geant3
geant4	10.7.1	https://geant4.web.cern.ch
geant4_vmc	5-3	https://github.com/vmc-project/geant4_vmc
hepmc	2.06.11	http://hepmc.web.cern.ch
odc	0.18	https://github.com/FairRootGroup/ODC
pythia6	428-alice1	https://github.com/alisw/pythia6
pythia8	8303	http://home.thep.lu.se/~torbjorn/pythia8
root	6.22.08	https://root.cern
vc	1.4.1	https://github.com/VcDevel/Vc
vgm	4-8	https://github.com/vmc-project/vgm
vmc	1-0-p3	https://github.com/vmc-project/vmc
zeromq	4.3.2	https://github.com/zeromq/libzmq

Boost Libraries: Asio, Atomic, Beast, Bind, Container, Core, DLL, Filesystem, GIL, Intrusive, Interprocess, JSON, LexicalCast, Log, Math, Move, Multiprecision, Nowide, Optional, Outcome, Parameter, PFR, PolyCollection, Predef, PropertyTree, Regex, StackTrace, TypeTraits, Variant2.

The Dynamic Deployment System (DDS) - is a tool-set that automates and significantly simplifies a deployment of user defined processes and their dependencies on any resource management system using a given topology.

FairMQ is designed to help implementing large-scale data processing workflows needed in next-generation Particle Physics experiments. FairMQ is written in C++

FlatBuffers is a cross platform serialization library architected for maximum memory efficiency. It allows you to directly access serialized data without parsing/unpacking it first, while still having great forwards/backwards compatibility

Vc: portable, zero-overhead C++ types for explicitly data-parallel programming

Virtual Geometry Model (VGM) is a geometry conversion tool, actually providing conversion between Geant4 and ROOT TGeo geometry models. Its design allows inclusion of another geometry model by implementing a single sub-module instead of writing bilateral converters for all already supported models.

The Online Device Control project control/communicate with a graph (topology) of FairMQ devices using DDS or PMIx

The FairRoot framework

A simulation, reconstruction and analysis framework that is based on the ROOT system. The user can create simulated data and/or perform analysis with the same framework. Geant3 and Geant4 transport engines are supported, however the user code that creates simulated data do not depend on a particular monte carlo engine. The framework delivers base classes which enable the users to construct their detectors and /or analysis tasks in a simple way, it also delivers some general functionality like track visualization. Moreover an interface for reading magnetic field maps is also implemented.

License

FairRoot is distributed under the terms of the GNU Lesser General Public Licence version 3 (LGPLv3).

Release information

Please see : https://github.com/FairRootGroup/FairRoot/releases

Getting started

Please see : http://fairroot.gsi.de/getting_started for details.

Using the Project template

FairRoot deliver meanwhile a project template that can be used as a starting point for anybody who would like to build simulation and reconstruction on FairRoot. The project Template is in the FairRoot/template/project_template directory

The template demonstrate and implement the following:

General structure of the software (cake config files, VMC/Geant configurations, etc ..)

Example detector with sensitive and passive volumes (NewDetector) and data class

Particle Stack for Geant3/4 with filtering infrastructure

Event generators (Pythia6,8) more are available directly from FairRoot

Passive component implementation (Magnet Yoke, Beam Pipe)

Track visualisation tool (Event display)

A rename script which replace all the generic names to user defined ones

mpdroot.jinr.ru

NICA - MPD - SOFTWARE - COMPUTING -

THE MPDROOT

noot is the off-line software framework for simulation , reconstruction hysics analyses of the simulated or experimental data for MPD experiment

≡ Quick links @ FAQ		A Notifica	tions 🛐 🚨 Private messages rogaci
R Board index < Software			
Software			
FORUM	TOPICS	POSTS	Mark subfo
TPC alignment Materials for TPC alignment task	7	10	Re: The results of determinin by kuzmin Wed Oct 06, 2021 5:04 pm
Support & Maintenance	2	4	Re: Documentation - Wiki by hnatics Fri Aug 27, 2021 3:15 pm
TPC digitization	3	4	Local charges in TPC by abychkov Thu Sep 30, 2021 2:57 pm
New Topic 🖉 Search this forum Q 🕸			Mark topics read • 2 topics • F
TOPICS	REPLIES	VIEWS	LAST POST
It Finder % by kryman * Wed Sep 22, 2021 1:25 pm	3	38	by kryman 🔯 Thu Sep 30, 2021 5:57 pm
MpdRoot website by akryloy = Tue Aug 31, 2021 5:02 pm	0	19	by akrylov 🖾 Tue Aug 31, 2021 5:02 pm

MPD Software status (GIT)

Commits to dev

Excluding merge commits. Limited to 6,000 commits.

Update .gitlab-ci.yml - correct typo

Merge branch 'dev' into dev2pro

Update nicafemto version (again).
Newer version of nicafemto.

Update README.md

Replace evepic.png

Update README.md

K Event id's added.

New pair cuts added.

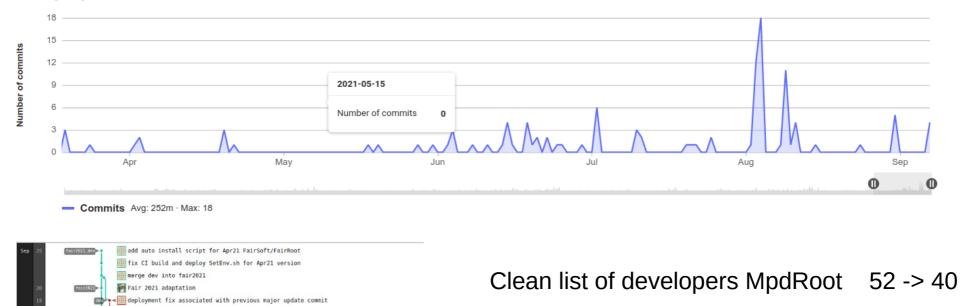
dev tune19p2

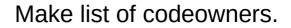
fixBranc

nicafento_pp

Update .gitlab-ci.yml: copy SetEnv.sh to main dir, see the commit

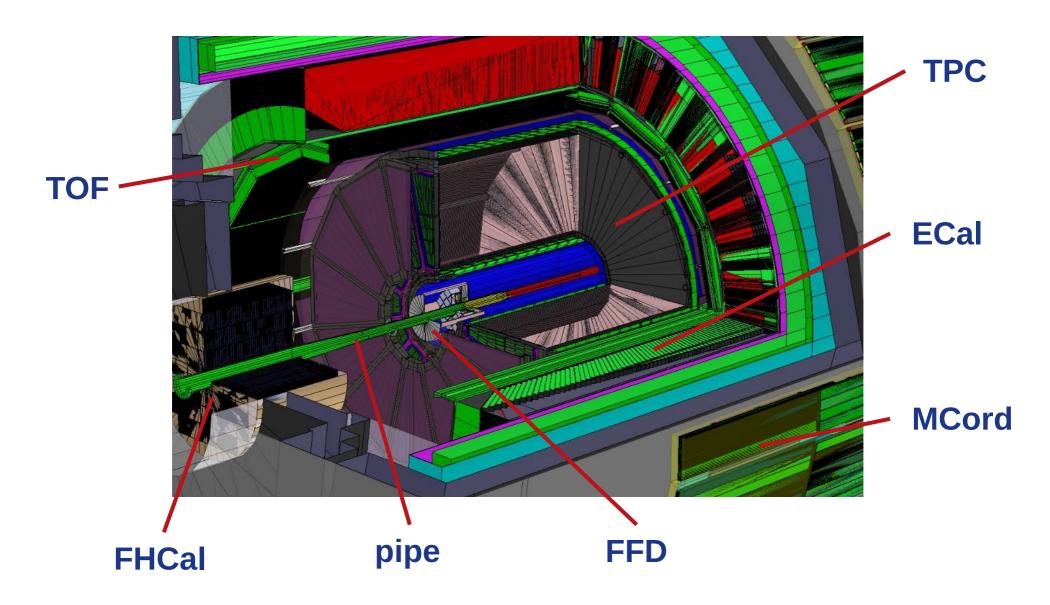
Corrections aimed at correct compilation of ROOT dictionaries

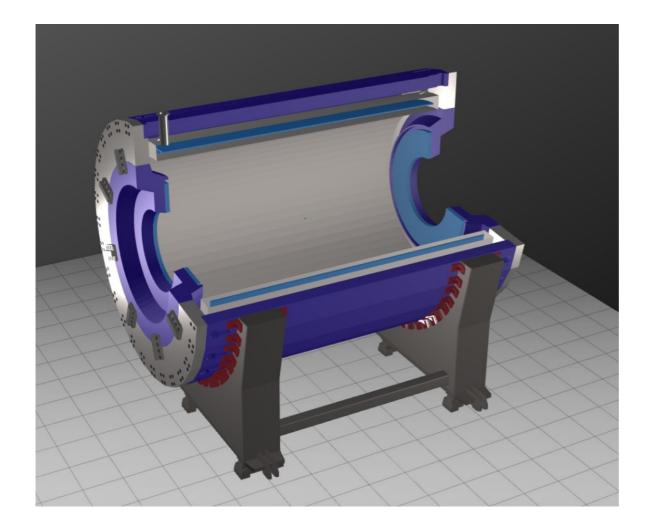

Fixing bug because of azimuthal angle convention violation in some topologies. IDDET: Removed NDET detector from macro/*. Fixed CMakeLists.txt files accordingly.


Some check + correct param. of cov. track matrix Modifications of main HBT macro to be used with miniDst

Adaptation to new data manager in nicafemto.

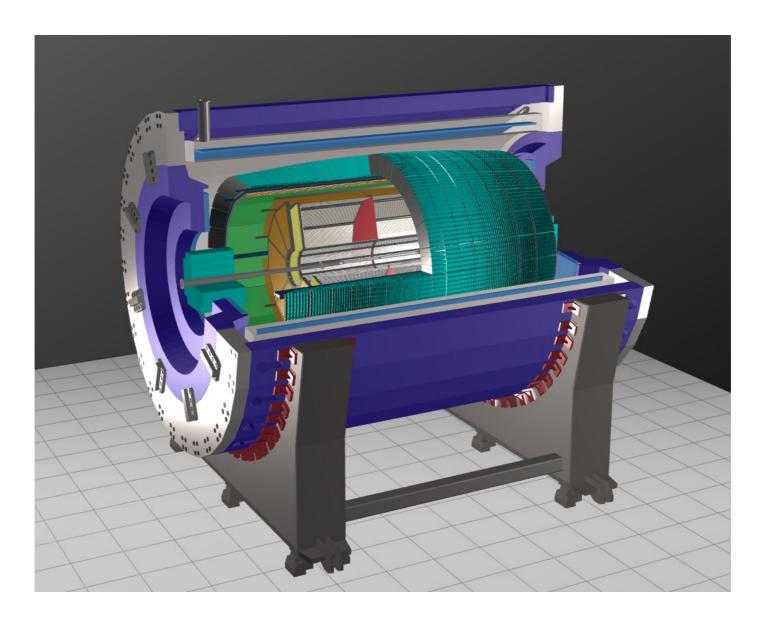
🗙 QA core manager - plot ranges changed.


Analysis manager framework implemented

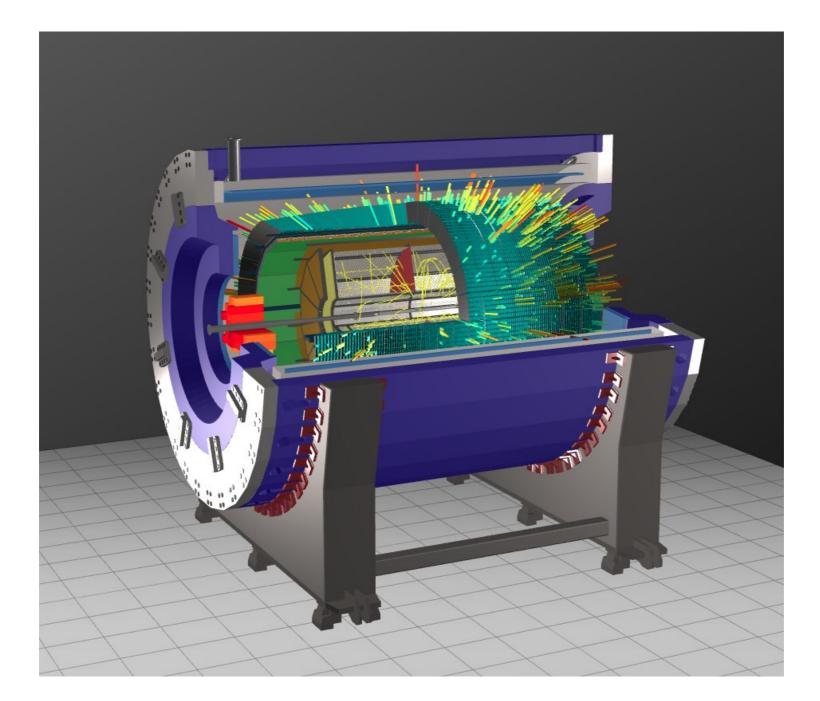

Codeowners from PWG ?

MPD geometry checked for stage 1

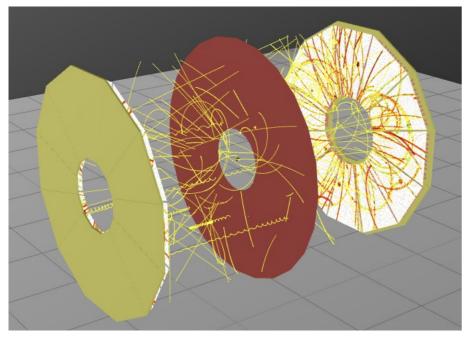
New geometry for magnet

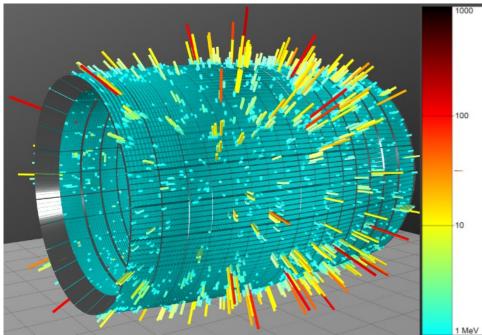

Magnet with Cradle

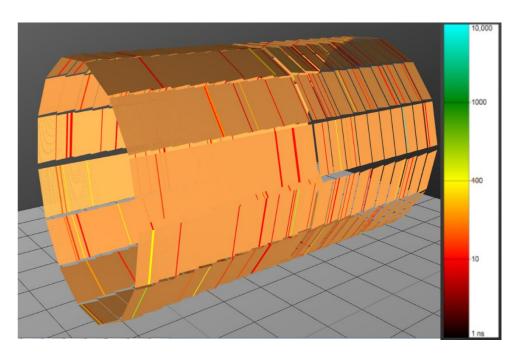
MPD: Event Display geometry

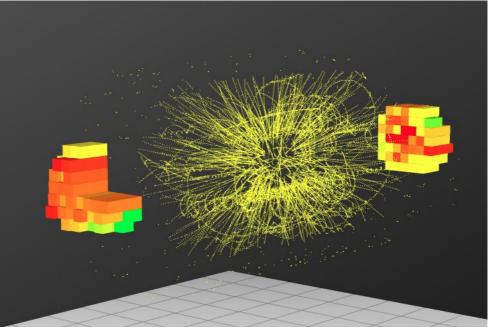

https://mpd-edsrv.jinr.ru/

Krylov A. report


MPD: Event Display Events






MPD EventDisplay: detectors hits

TPC alignment

Kuzmin V. report

Task: find 144 parameters, which determine the positions of 24 sectors of TPC from the experimental data

Method: If the distance between a single measurement of a track point (hit)

 $h_i(p^k)$ (i — number of the track point, k – number of the sector)

and the curve set by the track model

$$\overrightarrow{r} = \overrightarrow{T}(\overrightarrow{q})$$

where q is the vector of track parameters and p_k are 6 global parameters that determine the position of the sector k. Then we can write the sum:

$$\chi^2 = F(\overline{p}, \overline{q}) = \sum_{events} \sum_{i}^{tracks} \frac{(\overline{r}_i(\overline{p}_k) - T_i(\overline{q}))^2}{\sigma^2}$$

 $Q \equiv \mathbf{A}$

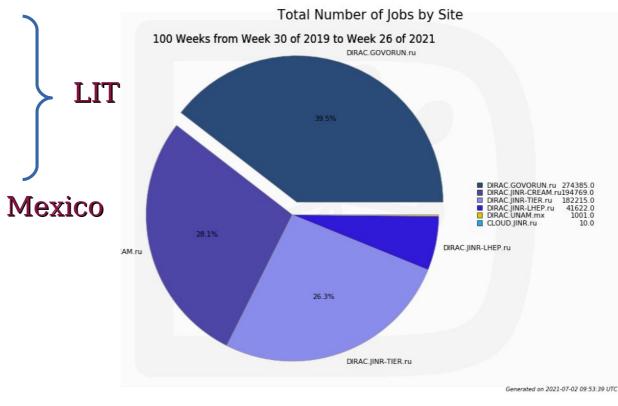
Mass production requests

https://mpdforum.jinr.ru/c/MCProd

MPD

			<u> </u>	
Monte-Carlo productions Latest Top		-	► New To	pic 🎝
Торіс		Replies	Views	Activity
Request 17: PWG3 - PHQMD, flow, 20M min.bias AuAu @ 2.4, 3.0, 4.5 GeV		9	96	11d
Request 16: PWG1 – DCM-SMM, min bias BiBi@9.2 GeV, 1 mln	G G A	8	136	Aug 9
Request 15: PWG2, PHQMD, BiBi@9.2, 40M minbias	()	3	90	Aug 7
Request 14: PWG1 - UrQMD, 1M min. bias BiBi @ 9.2 GeV	(P) (G) (A)	3	57	Jun 27
Request13: PWG4 - dielectrons, 15M UrQMD BiBi@9.2	R (A)	4	111	Jun 12
Mass production storage on NICA cluster		6	102	May 24
Request11: PWG4 - dielectrons, 15M minbias BiBi@9.2, new dE/dx	R K A	13	222	Apr 30
Request 12: PWG3 - vHLLE+UrQMD, min. bias, AuAu @ 7.7 GeV	K A	7	143	Apr 12
Request 10: PWG3 - vHLLE+UrQMD, flow, 15M min. bias AuAu @ 11.5 GeV	PAPGD	12	166	Dec '20
Nica cluster problem	ĸ	1	84	Nov '20
Request 6: PWG1 - SMASH, BiBi @ 9.46 GeV, min. bias, GEANT3		11	299	Oct '20

Computing resources used for MP



- NICA offline cluster 250 cores (limit for users) LHEP
- GOVORUN 818 cores
- Tier1 920 cores
- Tier2 1000 cores
- Clouds 70 cores
- UNAM 100 cores

JINR computing resources integration for MPD mass production

EOS

Govorun NICA Cluster

To be

included

RAC

Igor Pelevanyuk report

The **DIRAC Interware** is a software which provides various interfaces for the integration of distributed heterogeneous computing and storage resources.

Instead of using all JINR storage and computing resources individually, DIRAC allows processing of large amounts of data through unified single system.

Monte-Carlo mass production for MPD were successfully performed on the integrated system of Tier-1, Tier-2, Govorun and NICA cluster via DIRAC. JINR and Member-States cloud resources have been tested and ready to accept jobs.

Tests

done

Cloud

Running

Tier-1 CICC/Tier-2

Running Running

Mass production summary

2020 - 2021 years

Generator	PWG	Coll.		# of events(M)	Reco
UrQMD	PWG4	AuAu	11	15	+
		BiBi	9	10	+
			9.46	10	+
			9.2	30	+
	PWG2	AuAu	11	10	+
	PWG3	AuAu	7.7	10	+
		BiBi	7.7	10	+
			9	10	+
	PWG1	ВіВі	9.2	1	+
DCM-SMM	PWG1	BiBi	9.2	1	+
PHQMD	PWG2	BiBi	8.8	15	+
			9.2	40	+
			2.4/3.0/4.5	10/10/2	-
vHLLE-UrQMD	PWG3	BiBi	11.5	15	+
		AuAu	11.5	15	+
		AuAu	7.7	20	+
Smash	PWG1	BiBi	9.46	10	+
		ArAr	4/7/9/11	20/20/20/20	-
		AuAu	4/7/9/11	20/20/20/20	-
		XeXe	4/7/9/11	20/20/20/20	-
		СС	4/7/9/11	20/20/20/20	-
		рр	4/7/9/11	50/50/50/50	-
Total				744	222

Mass production storages

http://mpdroot.jinr.ru -> SOFTWARE -> DataBases -> MPD DataBase

•	Main storage, integrated in Dirac File Catalog	
	/eos/eos.jinr.ru/nica/mpd/dirac/mpd.nica.jinr/vo/mpd/data/	1 PB
•	LHEP mirror, will be integrated in Dirac File Cat	alog
	/eos/nica/mpd/sim/data/	300 TB
•	Data produced before 2019	
	/zfs/store6.hydra.local/mpddata/data/	85 TB
	/eos/hybrilit.jinr.ru/nica/	100 TB

dCache(LIT type robot), tested

MPD databases

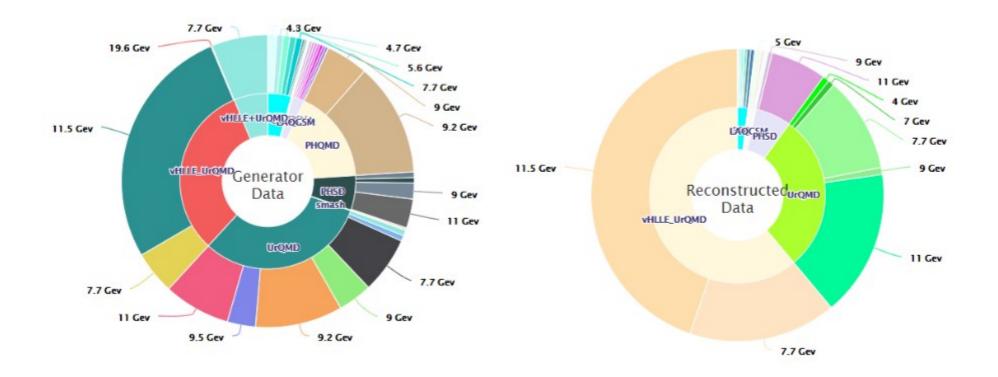
- List of MPD members & authors
- MC generator events mass productions
- ECAL instrumentation
- TPC instrumentation
- ✓ TOF instrumentation
- Alignment parameters DB
- LogBook for Experiment

~	•	•	•	•

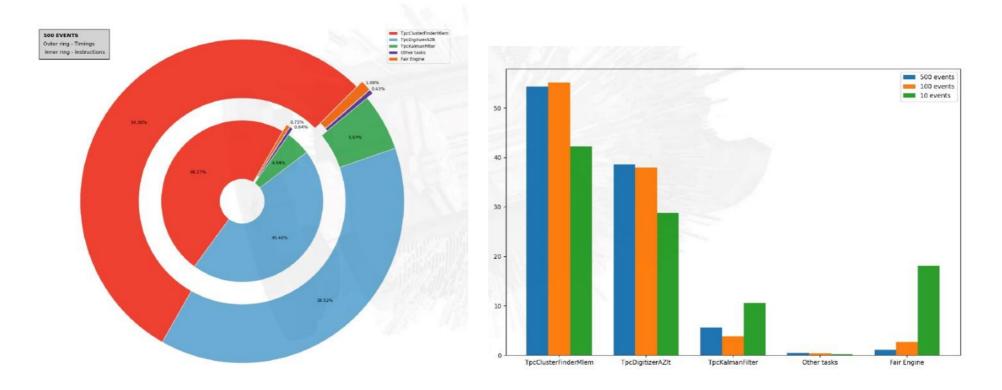
MPD geometry alignments DB

Home TPC alignments TOF alignments

MPD Collaboration list
🖬 Login
Password


MPD	Monte-Carlo	DB
	Username	
	Password	
	Login	

MC events database


http://mpdroot.jinr.ru -> SOFTWARE -> DataBases -> MPD DataBase

Optimization & improving code quality

Hnatic S. report

GETTING THE SD PROCESS UNDER CONTROL

Code Ownership within GitLab

MPD software development team

Bychkov A. Fomenko K. Krylov A. Moshkin A. Myktybekov D. Rogachevsky O.

LIT Participants

Podgainy D. Zuev M. Pelevanyuk I. Belyakov D. Balashov N. Kadochnikov I. Busa Jan Jr. Hnatic Slavomir

LNP JINR

Krylov V.

Other institutes

Kuzmin V.MSUSolomin A.MSU

The work is supported by RFBR grant N¹⁸⁻⁰²⁻⁴⁰¹⁰²

Thanks for your attention