

NICA: Unique and complementary

A Access neutron star matter in laboratory

Why MPD at NICA?

• Common question: why is NICA/MPD needed, when there is NA61/SHINE at SPS, STAR BES (with FXT) and FAIR?

	NA61/SHINE at SPS	CBM at FAIR	STAR BES+FXT at RHIC	MPD + BM@N at NICA
Coverage of region of transition from baryon to meson dominance ("horn")	only higher √s _№	only lower √s _№	Yes (mixing collider and fixed target)	Yes (consistent acceptance)
expected luminosity (w.r.t. MPD)	lower	higher	lower	reference
possibility for system size scan	yes	yes	yes (?)	yes
full centrality range	no	yes (?)	yes	yes
acceptance type	Fixed target	Fixed target	Collider + fixed target	Collider + fixed target
running plan (heavy-ions)	approved for 2021 (per-year decision)	beyond 2025	running concluded in 2021	2023 and beyond
status at the facility (possible running time)	in competition with many projects (LHC)	CBM one of four main experiments	end of datataking (heavy-ion) in 2021	flagship experiments several months/year

Multi-Purpose Detector (MPD) Collaboration

Adam Kisiel, JINR/WUT

12 Countries, >500 participants,42 Institutes and JINR

Applying to join MPD:

Pavol Jozef Šafárik University, Slovakia

Three Gorges University, China; Institute of Modern Physics, CAS, Lanzhou, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georaia; Joint Institute for Nuclear Research; FCFM-BUAP Puebla, Mexico; FC-University of Colima, Colima, Mexico; FCFM-UAS, Culiacán, Mexico; ICN-UNAM, Mexico City, Mexico; CINVESTAV, Mexico City, Mexico; Universidad Autónoma Metropolitana, Iztapalpa, Mexico; Institute of Applied Physics, Chisinev, Moldova; WUT, Warsaw, Poland; NCNR, Otwock – Świerk, Poland; University of Wrocław, Poland; University of Silesia, Katowice, Poland; University of Warsaw, Poland; Jan Kochanowski University, Kielce, Poland; Institute of Nuclear Physics, PAS, Cracow, Poland; Belgorod National Research University, Russia; INR RAS, Moscow, Russia; NRNU MEPhl, Moscow, Russia; Moscow Institute of Science and Technology, Russia; North Osetian State University, Russia; NRC Kurchatov Institute, ITEP, Russia; Kurchatov Institute, Moscow, Russia; St. Petersburg State University, Russia; SINP, Moscow, Russia; PNPI, Gatchina, Russia; Vinča Institute of Nuclear Sciences, Belgrade, Serbia;

Memorandum of Understanding

- Memorandum of Understanding formalizes the participation of the Institution in the Collaboration, defines its rights and obligations
- Currently MPD MoU ready for: Mexican Consortium MexNICA, Poland: WUT, NCBJ, Warsaw University, UJK in Kielce, University of Wrocław, University of Silesia, Czech Republic: Palacky University, NPI CAS, Azerbaijan: NNRC Baku, Bulgaria: Plovdiv University, Russian Federation: SPSU, INR RAS, SINP MSU, Belgorod State University, MIPT Moscow, NRC "Kurchatov Institute" ITEP, Armenia: A. Alikahnyan National Lab of Armenia, China: Tsinghua University, University of Chinese Academy of Sciences, Central China Normal University, Fudan University, University of Science and Technology of China
- Recently signed MoUs: Poland: Institute for Nuclear Physics of Polish Academy of Sciences, China: Huzhou University, University of South China, Three Gorges University, Shandong University, Russia: Petersburg Nuclear Physics Institute, MEPhI NRNU

Adam Kisiel, JINR/WUT

MPD Physics Programme 1 2

G. Feofilov, A. Ivashkin

Global observables

- Total event multiplicity
- Total event energy
- Centrality determination
- Total cross-section measurement
- Event plane measurement at all rapidities
- Spectator measurement

V. Kolesnikov, Xianglei Zhu

Spectra of light flavor and hypernuclei

- Light flavor spectra
- Hyperons and hypernuclei
- Total particle yields and yield ratios
- Kinematic and chemical properties of the event
- Mapping QCD Phase Diag.

K. Mikhailov, A. Taranenko Correlations and **Fluctuations**

- Collective flow for hadrons
- Vorticity, Λ polarization
- E-by-E fluctuation of multiplicity, momentum and conserved quantities
- Femtoscopy
- Forward-Backward corr.
- Jet-like correlations

V. Riabov, Chi Yang

Electromagnetic probes

- Electromagnetic calorimeter meas.
- Photons in ECAL and central barrel
- Low mass dilepton spectra in-medium modification of resonances and intermediate mass region

4

Wangmei Zha, A. Zinchenko

Heavy flavor

5

3

- Study of open charm production
- Charmonium with ECAL and central barrel
- Charmed meson through secondary vertices in ITS and HF electrons
- Explore production at charm threshold

MPD Status and Performance Publication

Status and initial physics performance studies of the MPD experiment at NICA

The MPD Collaboration¹

 $^1\mathrm{The}$ full list of Collaboration Members is provided at the end of the manuscript

Received: October 10, 2021/ Accepted: date

Abstract The Nuclotron-based Ion Collider fAcility 2 (NICA) is under construction at the Joint Institute for ³ Nuclear Research (JINR), with commissioning of the 4 facility expected in late 2022. The Multi-Purpose De-5 tector (MPD) has been designed to operate at NICA 6 and its components are currently in production. The 7 detector is expected to be ready for data taking with ⁸ the first beams from NICA. This document provides ⁹ an overview of the landscape of the investigation of the ¹⁰ QCD phase diagram in the region of maximum bary-¹¹ onic density, where NICA and MPD will be able to ¹² provide significant and unique input. It also provides ¹³ a detailed description of the MPD set-up, including its 14 various subsystems as well as its support and computing 15 infrastructures. Selected performance studies for partic-¹⁶ ular physics measurements at MPD are presented and 17 discussed in the context of existing data and theoretical 18 expectations.

¹⁹ Keywords NICA \cdot MPD \cdot QCD

$_{20}$ Contents

21 22 23	$\frac{1}{2}$	Introduction	$\begin{smallmatrix}&&64\\1&&&\\&4\\&&66\\4\end{smallmatrix}$	6 Conclusions 44 Acronyms 50 Glossary 50
24 25		2.2 Anisotropic flow measurements	5 6	
26 27		2.4 Fluctuations	8 67 8	1 Introduction
28 29	3	2.6 Electromagnetic probes	10 11 ⁶⁸	The Multi-Purpose Detector (MPD) is one of the two dedicated heavy-ion collision experiments of the
30 31 32		3.2 Time Projection Chamber	12 70	Nuclotron-based Ion Collider fAcility (NICA), one of
33 34		3.4 Electromagnetic Calorimeter 3.5 Forward Hadron Calorimeter	17 19^{72}	at the Joint Institute for Nuclear Research (JINR)
35 36		3.6 Fast Forward Detector	21 ⁷³ 21 ₇₄	in 2022. Its main scientific purpose is to search for novel phenomena in the baryon-rich region of the QCD

37			3.7.1 The Inner Tracking System
38			3.7.2 The MiniBEBE Detector
39			3.7.3 The Cosmic Ray Detector
40		3.8	Infrastructure and support systems
41			3.8.1 MPD Hall
42			3.8.2 Mechanical integration and support
43			structure
44			3.8.3 Support sytems
45		3.9	Electronics
46			3.9.1 Slow Control System
47			3.9.2 Data Acquisition
48	4	Soft	ware development and computing resources for
49		the	MPD experiment
50		4.1	Software
51		4.2	Computing
52		4.3	Preparation for data taking
53	5	Exa	mples of physics feasibility studies
54		5.1	Centrality determination
55		5.2	Bulk properties: hadron spectra, yields and ratios 31
56		5.3	Hyperon reconstruction
57			5.3.1 Λ , Λ and Ξ^- reconstruction
58			5.3.2 Ξ^+ and Ω^{\mp} reconstruction
59		5.4	Reconstruction of resonances
60		5.5	Electromagnetic probes
61		5.6	Anisotropic Flow
62		5.7	Event-by-event net-proton and net-kaon mea-
63		a	surements
64	6	Con	clusions
65	Ac	rony	ms
66	Gl	ossar	y
_	11	Inte	aduction
67	T I	Intr	bauction
	-		
68	Tł	ie N	Iulti-Purpose Detector (MPD) is one of the
69	tw	o de	dicated heavy-ion collision experiments of the
70	Nι	iclot	ron-based Ion Collider fAcility (NICA), one of

- Editorial Committee: A. Ayala, D. Blaschke, S.
 Golovatyuk, A. Kisiel, V. Kolesnikov, V. Riabov, O.
 Rogachevsky, A. Taranenko + Internal Review
 Committee: I. Tserruya (chair), F. Wang, Z. Tang
- Main physics goals of MPD in the landscape of current heavy-ion physics and astrophysics and status of the readiness of the MPD detector subsystems
- Report on example expected physics results on the first run of MPD, with relation to expected detector performance
- Second round of Collaboration Review conducted from Aug 27th until September 10th.
- Final version expected in the coming weeks

NICA Facility running plan

- Extensive commissioning of Booster accelerator
- Heavy-ion (Fe/Kr/Xe) run of full Booster+Nuclotron setup
- Year 2022:
 - Completion of NICA Collider and transfer lines
- Year 2023:

- Initial run of NICA with Bi+Bi @ 9.2 AGeV (other energies a second priority)
- Goal to reach luminosity of 10²⁵ cm⁻²s⁻¹, at least 10⁸ collisions at 9.2 AGeV
- Year 2024:
 - Goal to have Au+Au collisions and acceleration in NICA (up to 11 AGeV)
- Beyond 2024:
 - Maximizing luminosity, possibility of collision energy and system size scan

Adam Kisiel, JINR/WUT

Next: "First Physics in MPD" Publication

- Initial running plan for the NICA Accelerator, including beam species and collision energy has been recently discussed
- Large experience gained in preparation of the "MPD Status and Performance" manuscript
- Urgent need for an updated document with clear physics focus and consistent plan and message for "First Physics"
- Need to show up-to-date detector performance and relevant Monte-Carlo simulations, addressing recent theoretical developments
- Discussions on the draft started in Physics Council, each PWG is expected to provide input to the manuscript

Monte-Carlo simulations, computing readiness

MPD			Q	
Do you want live notifications when people reply to your posts? Enable Notifications				×
Monte-Carlo productions Latest Unread (3) Top		🖋 Edit	+ New T	opic 🇅
і≣ Торіс		Replies	Views	Activity
	K	0	73	May '20
Request 17: PWG3 - PHQMD, flow, 20M min.bias AuAu @ 2.4, 3.0, 4.5 GeV ④	PAA	9	99	17d
Request 16: PWG1 – DCM-SMM, min bias BiBi@9.2 GeV, 1 mln 3	GGA	8	140	Aug 9
Request 15: PWG2, PHQMD, BiBi@9.2, 40M minbias	V A	3	91	Aug 7
Request 14: PWG1 - UrQMD, 1M min. bias BiBi @ 9.2 GeV	PGA	3	59	Jun 27
Request13: PWG4 - dielectrons, 15M UrQMD BiBi@9.2	R A	4	115	Jun 12
Mass production storage on NICA cluster	🔼 R	6	102	May 24
Request11: PWG4 - dielectrons, 15M minbias BiBi@9.2, new dE/dx	R K A	13	225	Apr 30
Request 12: PWG3 - vHLLE+UrQMD, min. bias, AuAu @ 7.7 GeV	KA	7	146	Apr 12
Request 10: PWG3 - vHLLE+UrQMD, flow, 15M min. bias AuAu @ 11.5 GeV	PAPGD	12	168	Dec '20
Nica cluster problem	K	1	84	Nov '20
Request 6: PWG1 - SMASH, BiBi @ 9.46 GeV, min. bias, GEANT3 7		11	301	Oct '20
Request 9: PWG3 - UrQMD, flow, 10M min. bias AuAu,BiBi @ 7.7 GeV	PAA	3	214	Oct '20
Request4: PWG3 - UrQMD, min. bias, BiBi @ 9 GeV		29	430	Sep '20
Request 8: PWG1 - SMASH, pp, C+C, Ar+Ar, Xe-Xe, Au+Au@ 4, 7, 9, 11 GeV, min. bias, Generator-level only		2	150	Sep '20
Request 7: PWG2 - BiBi@9, 15M minbias		6	179	Sep '20

- Regular productions of Monte-Carlo simulations, using MPD computing resources
- Requests can be made via Physics Working Groups
- Extensive new requests expected in response to clarification of initial NICA beams and in preparation for the next major publication on "First Physics in MPD"

MPD talks at major conferences

1PD			Q	
to you want live polifications when people reply to your posts? Enable Notifications				×
		& Edit	+ Now T	onic Ó
		# Luit	- 116W 1	opic 4
Торіс		Replies	Views	Activity
CT* Workshop slides - Itzhak Tserruya ≜ MPD Physics		1	8	4h
ECT* Workshop slides ●	0	0	3	18h
eview: Presentation slides on Dilepton measurements for ECT workshop	(S) (K)	2	13	3d
Plenary] - [Nucleus-2021] - V. Riabov - Current status of the MPD@NICA Project	RK	1	20	20d
Status and initial physics performance studies of the MPD Experiment" Second Round og Collaboration eview ≜ MPD Physics	₭ М 🤍 🕽 🕒	13	131	27d
WG4] - [ICNFP-2021] - N. Burmasov - Probing the properties of dense nuclear matter with photon onversions at NICA ≜ MPD Physics		5	25	Aug 26
WG2] - [ICNFP-2021] - V. Riabov, Hadronic resonances in heavy-ion collisions at NICA energies and their econstruction in the MPD setup	R	2	16	Aug 24
WG2] - [20th Lomonosov Conference] - M. Malaev, Study of the centrality and collision energy dependence f resonance production using the MPD detector at NICA Conference Talk Approvals	M	0	11	Aug 19
WG4] - [20th Lomonosov Conference] - D. Ivanishchev, Feasibility of thermal photon measurements in the ture MPD experiment at NICA L≜ Conference Talk Approvals	0	1	15	Aug 19
Status and initial physics performance studies of the MPDExperiment", First Round of Collaboration Review ▲ MPD Publications		20	230	Aug 11

- Progress report for Particle Physics PAC, MPD DAC planned for 01.2022
- MPD status talk presented SQM 2021, HADRON 2021, RHIC BES Seminar as well as RHIC BES program summary workshop
- Rerular reports at major conferences (Nucleus 2021, ICT, ICNFP, Lomonosov ...)
- Rehearsals for major talks organized during MPD Physics Forum (Thursdays, 10 AM MST) – open to all Collaborators
- Possibility to organize rehearsals also for major seminars. Speakers should contact

PWG convenors VIII-th MPD Collaboration Meeting, JINR, 12 Oct 2021

NICA Electronic tools for communication

- Resources being actively used by the Collaboration
 - General purpose mailing list: MPD_Coll_List(at)maillist.jinr.ru
 - The MPD Forum (based on the Discourse web forum platform) <u>http://mpdforum.jinr.ru</u>
 - Specific mailing lists for: Executive Council, Physics Council, Institutional Board, new lists can be created on request
 - The INDICO system (coupled to videoconference platforms) for planning, execution and archiving of MPD meetings
 - ZOOM, Volna system, WebEX, Vidyo systems for videoconferencing
- Resources in active development and being kept up to date:
 - General NICA webpage with MPD section: http://mpd.jinr.ru
 - MPD Software webpage: <u>http://mpdroot.jinr.ru</u>

- "New" MPD-dedicated webpage: <u>http://mpd.jinr.ru/experiment</u> Adam Kisiel, JINR/WUT VIII-th MPD Collaboration Meeting, JINR, 12 Oct 2021

NICA IT resources for the MPD members

- Several IT resources are available to MPD members. To request access, a member **must** be on the MPD Collaboration List (members are added to the list on the request of the Group Leader)
 - Computing account at LIT (HybriLIT) job submission, access to data, access to the DIRAC Infrastructure
 - Computing account at the NICA Cluster job submission, access to data, including central Monte-Carlo productions
 - Account at the MPD Forum place for internal MPD discussions
 - 50GB Private "cloud": http://disk.jinr.ru (very useful for sharing large files)
- Other useful IT resources, available to all users
 - Account at the JINR INDICO (http://indico.jinr.ru)
 - Account in the Volna webconferencing system

Adam Kisiel, JINR/WUT

Milestones of MPD assembling in 2020-2022

Year 2020

- MPD Hall and pit are ready to store and unpack Yoke parts
 - The first 13 plates of Magnet Yoke are assembled for alignment checks
- Sept 15th Oct 1st Solenoid is ready for transportation from ASG (Italy) 3.
- Solenoid arrived in Dubna November 10th 4.
- 5. Nov-Jan

July 15th

August

1.

2.

- July-Aug 6.
- 7. Aug - Dec
- 8. Nov –Dec
- Jan 17th -Mar 9
- 10. May
- 11. June-July
- 12. July Aug
- 13. September
- 14. Sept Nov
- 15. November
- 16. Nov Dec.
- 17. December

18. Jan +

Adam Kisiel, JINR/WUT

- Assembling of Magnet Yoke at JINR

Year 2021

- Solenoid installation into Iron Yoke and alignment
- Electrical, pressure tests and vacuum tests
- Assembling Iron yoke, Cryogenic platform and Cryostat, Vacuum test Year 2022
- Liquid Nitrogen cooling
- Cryogenic infrastructure ready
- Cooling down to LHe temperature
- Magnetic Field measurement
- Installation of Support Frame.
- Installation of TOF, TPC, Electronics Platform, Cabling
- Installation of beam pipe, FHCal, Cosmic Ray test system
- Cosmic Ray tests
- Commissioning

Year 2023

- Run on the beam

Interior of MPD Hall

Adam Kisiel, JINR/WUT

MPD Magnet installation procedure

Installation of the MPD Supercoducting coil inside the iron Magnet Yoke in MPD Pit **29 July 2021**

Critical milestone in the assembly of the full MPD apparatus

Now working on commissioning, cryogenic, electrical tests, before magnetic field measurement

Adam Kisiel, JINR/WUT

NICA Time Projection Chamber (TPC): main tracker

Adam Kisiel, JINR/WUT

length	340 см
outer radius	140 см
inner radius	27 см
gas	90%Ar+10%CH ₄
drift velocity	5.45 см / µs;
drift time	< 30 µs;
# R-O chamb.	12 + 12
# pads/ chan.	95 232
max rate	< 7kHz (L=10 ²⁷)

- large pads 5×18 mm²
- small pads 5×12 mm²

Read-Out Chambers (ROCs) are ready and tested (production at JINR) Electronics sets in production Two sites (Moscow, Minsk) tested for electronics production C1-C2 and C3-C4 cylinders assembled TPC flange under finalization

MPD Time-of-Flight

Mass production staff: 4 physicists, 4 technicians, 2 electronics engineers Productivity: ~ 1 detector per day (1 module/2 weeks)

All procedure of detector assembling and optical control is performed in a clean rooms ISO class 6-7.

Glass cleaning with ultrasonic wave & deionized water

MRPC assembling

Automatic painting of the conductive layer on the glass

White assembling				Soldering HV connector and readout pins		
	Number of detectors	Number of readout strips	Sensitiv e area, m ²	Number of FEE cards	Number of FEE channels	
MRPC	1	24	0.192	2	48	/
Module	10	240	1.848	20	480	
Barrel	280	6720	51.8	560	13440	
Adam Kisi	el IINR/WU	Г		VIII-th MPD	Collaboration ^{Me}	et

Single detector time resolution: 50ps

Purchasing of all detector materials completed So far 40% of all MRPCs are assembled Assembled half sectors of TOF are under Cosmics tests Investigation of solutions for detector integration and technical installations

VIII-th MPD Collaboration⁾Meeting, JINR, 12 Oct 2021

NICA Electromagnetic Calorimeter (ECAL)

Barrel ECAL = <u>38400</u> ECAL towers (2x25 half-sectors x 6x8 modules/half-sector x 16 towers/module)

~450 modules (16 towers each) = 4 sectors produced
400 modules – production started, finish by the end of Mar 2022

Sectors assembling procedure under development. Mass assembling of ECal sectors start - October 2021 Up to 12 sectors should be ready in 2022

Pb+Sc "Shashlyk" ; read-out: WLS fibers + MAPD; L ~35 cm (~ 14 X_0); Segm. (4x4 cm²); $\sigma(E) ~ 5\%$ @ 1 GeV; time res. ~500 psAdam Kisiel, JINR/WUTVIII-th MPD Collaboration Meeting, JINR, 12 Oct 202120/32

NICA Forward Hadron Calorimeter (FHCal)

VIII-th MPD Collaboration Meeting, JINR, 12 Oct 2021

21/32

NICA-MPD-Platform for Electronics

- Electronics platform has 4 levels with 8 racks on each level, each Rack provides cooling, fire safety and radiation monitor
 Cable ducts connect detectors inside of MPD and Electronics Platform
- Recent progress: the full design documentation of the NICA-MPD-Platform has been delivered to JINR, negotiations
 ongoing for contract to construct and install equipment
- The mechanical part of the Platform is delivered to MPD Hall, first two levels of the Platform installed in place

Adam Kisiel, JINR/WUT

MPD Cosmic Ray Detector (MCORD)

NCBJ, Świerk - WUT, Warsaw – UJK, Kielce (Poland) 18 scientists+12 engineers Project leaders: Ł. Świderski, M. Bielewicz (NCBJ) As soon as possible - start tests of MPD subsystems before Collider operation Cosmic Ray Detector required for Commissioning and tests of the MPD. The signals from MCORD will be used for TPC and TOF tests after their installation. First MCORD modules delivered to JINR on October 8th 2021 CDR for MCORD approved by the MPD DAC

Cosmic Ray Detector consists of plastic scintillators with SiPM (Phototubes) light converters

- a) Trigger (for testing or calibration) - testing before completion of MPD (testing of TOF, ECAL modules and TPC) - calibration before experimental sess
- Veto (normal mode b) track and time window recognition) Mainly for TPC and eCAL

Additionally

c)

22

730

5. MCORD Detector

SCINITII I ATODS

(Lesting Of	TOF, LCAL modules and TFC	SOMHELAIONS		
- calibratio	n before experimental session	Number of scintillators:		660 pcs
Veto (norm	nal mode -	Dimensions of scintillators:		95x25x1500 [mm]
track and t	ime window recognition)	Dimensions of detector:		100x30x1554 [mm]
Mainly for	TPC and eCAL	Scintillators are placed in the recta	ngle profile	10x30x2.5 [mm]
		Weight of detector:	0	6.5 kg
Actrophysic	c (much chower and hundles)	Material of scintillators casing:		Aluminum allov
- unique for	borizontal events	MODULES		,
Norking in c	ooperation with TPC	Number of detector in one module:	: 18	
	4700	Number of Modules:	28	
	19	Dimensions of module:	730)x90x4700 [mm]
		Weight of one module:	150) kg
		SIPM/MMPC		Ū
		Number of SiPMs (Chanels)	1320	
		Number of SiPMs (with two fibers)	2640	
\backslash		RESOLUTION		
	18 detectors = 1 module	Position resolution: In X axis – up	to 5 cm, In Y	axis – 5-10 cm
\sim	mass about 150kg	Time Resolution – about 300-500	ps	
	mass about 150kg	Number of events (particles):	about 100-1	50 per sec per m2
		Calculated Coincidence factor	about 98%	, p

NICA Inner Tracker System (ITS): precise tracking

Consortium includes JINR, NICA (BM@N & MPD), FAIR, Russian, Polish and Ukrainian Institutes + CCNU Central China Normal Univ., IMP- Institute of Modern Physics, USTC – Hefei

Protocol # 134 between CERN and JINR states the legal terms for transaction of CERN developed novel technology and the knowhow for building the MPD-ITS on the basis of Monolithic Active Pixel Sensors (*the MAPS*) ALPIDE, signed in 2018. This document laid a clear road towards the MPD ITS.

ITS TDR expected for MPD DAC in January 2022

MPD ITS based on ALICE type staves

Adam Kisiel, JINR/WUT

MiniBeBe (Mini Beam-Beam Counter)

Main requirement:

- Provide fast wake-up signal for TOF and reference time for TOF measurement with time resolution of ~30 ps
- Improve trigger efficiency for p+p, p-A and low multiplicity A-A
- Provide possibility to perform luminosity measurements at Phase 0 of NICA operation
- Presentation of MiniBeBe progress expected at MPD DAC in January 2022

Adam Kisiel, JINR/WUT

NICA Centrality and reaction plane in FHCal

Energy distribution in FHCal modules

Adam Kisiel, JINR/WUT

Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
 - 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
 Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from $p_T = 0.2$ to 2.5 GeV/c
- Extrapolation to full p_τ-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p_τ-spectra and Gaussian for rapidity distributions)

Adam Kisiel, JINR/WUT

Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco.

Adam Kisiel, JINR/WUT

Resonances at MPD

· Minbias Au+Au@11 (UrQMD) · Full reconstruction and realistic PID · Topology cuts and secondary vertex · Event mixing for background

NICA Performance of collective flow studies

Au+Au, $Vs_{NN} = 4.5$, 7.7, 11 GeV, UrQMD, GEANT4 + MPDRoot reco.

Collective flows a unique and direct way to probe EOS of QCD matter. Excellent flow measurement capabilities in MPD Adam Kisiel, JINR/WUT VIII-th MPD Collaboration Meeting, JINR, 12 Oct 2021

GeV⁻²cⁱ

Adam Kisiel, JINR/WUT

Electromagnetic probes in ECAL

Realistic ECAL reconstruction & analysis – large acceptance ECAL with

Summary

- Increased effort on the preparation of the MPD Physics Programme, with connection to detector readiness
- Definition of formal deadlines for MPD project milestones
- MPD recognition in global heavy-ion physics landscape
- All components of the MPD 1st stage detector advanced in production, commissioning expected for 2022