MPD PWG2 status report

Vadim Kolesnikov (VBLHEP, JINR) on behalf of the group

MPD Collaboration meeting JINR, Dubna, October 12-14, 2021

Outline

PWG2 tasks

Update of feasibility study results :

- Light hadrons
- Hypernuclei
- Hyperon polarization
- Resonances

□ Summary

PWG2 co-conveners:

Xianglei Zhu (Tsinghua Univ., China) *zhux@tsinghua.edu.cn* Vadim Kolesnikov (JINR, Dubna, Russia) *Vadim.Kolesnikov@cern.ch*

PWG2 physics cases

• Light flavor hadron spectra, yields, and ratios

- Energy, system size and centrality dependence of the production of charged hadrons (pions, kaons, (anti)protons).
- Extraction of transverse momentum spectra, rapidity distributions, mean multiplicities, and particle ratios.
- Nuclear modification factor, antiparticle/particle ratio, radial flow, phase diagram mapping.

Strangeness (hyperons and hypernuclei)

- Analysis of strange hyperons (Lambda, Ksi, Omega) and their antiparticles: spectra, yields, antiparticle/particle ratio, nuclear modification factor, azimuthal anisotropy (together with PWG3).
- (Anti)Lambda polarization.
- Reconstruction of single and double hypernuclei: spectra, rapidity density, and lifetime.

Resonances

- Production of \rho, \phi, Kstar, Lambda(1520) etc.

Light nuclei

- Production of nucleon clusters (d, t, He3, He4) in various reactions (from p+p to Au+Au): spectra, yields, coalescence coefficients.

MPD setup and overall performance

Light hadrons : Centrality dependence of particle production

A.Aparin + team

 Centrality classes were calculated based on the number of charged particles registered in TPC (PWG3-Flow group method). Results show little dependence on the model, pseudorapidity region used for track registration and collision energy

pT (GeV/c)

Centrality dependent spectra of pions and kaons

PHQMD model efficiency corrected spectra

MPD preliminary

Centrality dependent spectra of pions and kaons

UrQMD model efficiency corrected spectra

MPD preliminary

Progress in light (hyper)nuclei

- Progress in the simulation of the cluster formation (PHQMD model)
- Reconstruction and analysis of hypernuclei in Bi+Bi collisions

Progress in the PHQMD model

E.Bratkovskaya, J. Aihelin, V.Kireyeu, V.Voronyuk et al.

PHQMD model

J. Aichelin, E. Bratkovskaya, A. Le Fèvre, V. Kireyeu, V. Kolesnikov, Y. Leifels, V. Voronyuk, and G. Coci, Phys. Rev. C 101, 044905

<u>The goal:</u> to develop a unified n-body microscopic transport approach for the description of heavy-ion dynamics and dynamical cluster formation from low to ultra-relativistic energies <u>Realization:</u> combined model <u>PHQMD</u> = (PHSD & QMD) & SACA

PHQMD event generator is used as an input for the recent big DST production for PWG2 (40Mevents)

PHQMD model : predictions vs data at NICA energies (light nuclei)

<u>arXiv.org</u> > <u>nucl-th</u> > arXiv:2106.14839

- Reasonable predictions for the yields of fragments
- Tunable parameters for nuclear matter EoS and fragment formation time
- Can be used as input for simulation of nuclei at MPD

4.5

 p_{\pm} (GeV/c)

3.5

1.5

2

2.5

3

4

 p_{τ} (GeV/c)

4.5

1.5

2

2.5

3

PHQMD model : predictions vs data at NICA energies (hypernuclei)

- PHQMD reproduces results for hypernuclei from STAR
- Is used as an input for the simulation of hypernuclei at MPD

MPD PID performance for hypernuclei (update)

- Precise information on YN interactions: strange sector of nuclear EOS, astrophysics
- ✓ 40Mevent Bi+Bi at 9 GeV from the PHQMD model the largest data set produced ever!

Many thanks to the Soft. Group and A.Moshkin for the job!

- $\checkmark\,$ Centralized DST production
- ✓ MPD analysis chain
- ✓ Combined (dE/dx + TOF) particle ID, secondary vertexing

Reconstruction of hypertritons in MPD

Hipertritons in Bi+Bi collisions : efficiency and pT-spectrum

• 40M Events BiBi at 9.2 GeV, |y|<1, no centrality selection

- Invariant spectrum is reconstructed up pT=4.5 GeV/c
- Rapidity density can be obtained in minbias Bi+Bi collisions

Hyperon lifetime measurements

- Hyperon lifetime puzzle in HIC affects Y-N interactions in the medium and requires additional measurements
- Results in a broad region of cτ also requires large data sets

 $c\tau = cML/p$ (c-speed of light, M-hypertriton mass, L-track length)

H3L lifetime (old vs new production)

Old production 15Mevents, Au+Au at 9 GeV, b < 16 fm $\tau = [0.2 - 1.0]$ ns p1 = 259 +/- 19 ps (7%, 2%)

New production

40Mevents, Bi+Bi at 9.2 GeV, b < 12 fm $\tau = [0.1 - 1.5]$ ns p1 = 265 +/- 4 ps (2%, 1%)

Fit: $dN/d\tau = p0 \exp(-\tau/p1)$, p1 - lifetime

Several analyses with the recently produced 40M data sample are ongoing:

- \clubsuit Performance study for ${}_{\Lambda}\mathsf{H}^4$ and ${}_{\Lambda}\mathsf{H}\mathsf{e}^4$
- Hyperon production and antihyperon-to-hyperon ratio at high-pT

(anti)Hyperon spectra and ratio

Progress in the study of resonances

V. Riabov + team

AuAu at 11 GeV (UrQMD) after mixed-event background subtraction

- MPD is capable to reconstruct resonances in HIC by means of combined dE/dx+TOF information
- Second vertex decay technique is required for weakly decaying resonances

Nucleus-2021, V.Riabov for MPD

Resonances in Bi+Bi reactions

D. Ivanishchev for MPD, Nucleus-2021

- UrQMD v.3.4: BiBi@9.2 (5M events)
- * Full chain simulation and reconstruction, p_T ranges are limited by the possibility to extract signals, |y| < 1

- Reconstructed spectra match the generated ones within uncertainties
- ✤ First measurements for resonances will be possible with accumulation of ~ 10⁷ Bi+Bi@9.2 events
- ☆ Measurements are possible starting from ~ zero momentum → sample most of the yield, sensitive to possible modifications
- ✤ Measurements of Ξ(1530)⁰ are very statistics hungry

Global hyperon polarization (ongoing analysis)

E.Nazarova

Ψ¹_{EP} - φ

6

 $\Psi_{EP}^{1} - \phi$

- □ Minbias Au+Au at 7.7 GeV (PHSD)
- Global hyperon polarization modelled via thermodynamic (Becattini) approach
- Transfer of hyperon polarization vector from generator data (PHSD) to MPD simulation (MCTracks)
- Transfer of polarization during hyperon decays (feed-down)
- □ Centrality estimated through multiplicity in TPC (MC-Glauber, P.Parfenov)
- □ Event plane angle measured through FHCal

 $\overline{P}_{\Lambda/\bar{\Lambda}} = \frac{8}{\pi\alpha} \frac{1}{R_{\rm EP}^1} \left\langle \sin(\Psi_{\rm EP}^1 - \phi_p^*) \right\rangle$

Yields of light nuclei in Bi+Bi

- Little progress since April
- Additional tests of light nuclei (t, He3, He4) production and propagation in material

Low pT-range is populated by spallation in the MPD material (pT-cutoff is larger than expected)
BW fits describe the shape of spectra quite well, allowing precise integration and yield estimates

Event-by-event fluctuations (net-protons, net-kaons, density fluctuations)

- 5.10⁴ central Au+Au events at \sqrt{s} = 4, 6.2, 7.6 and 12.3 GeV and 10⁶ central Au+Au events at 8.8 GeV (PHSD)
- Recent reco chain, dE/dx+TOF combined PID
- Set of track quality cuts, DCA cut to suppress secondaries

Summary

MPD physics simulation within PWG2 is ongoing

<u>Steady progressing</u>: Hadron spectra, (Hyper)nuclei, Resonances

The goal – finish analyses and prepare materials for the "MPD Performance Paper 2"

 Further actions/plans : narrow focus to 1-Day observables (light hadrons, hyperons and resonances can be studied in a 10M data set), pay more attention to developing/standardization official event/track selection criteria, particle ID methods, efficiency corrections, and unification of the analysis code to MPD standards.

Thank you for your attention!