
Performance Analysis and Optimization
of MPDRoot

Buša J., Hnatič S., Rogachevsky O.

LIT JINR, LHEP JINR

OUTLINE

• Benchmarking TMath (cmath) in MPDRoot

• Profiling MPDRoot – Instructions vs Timings

• TMath Optimization

• Reducing Calls

• Premature Optimization / When to optimize

• Getting the SD process under control

• Improving code quality

• Testing in development

• Testing environment

TMATH BENCHMARKS

INSTRUCTION PROFILING

TIME PERFORMANCE

OPTIMIZATION TMATH

REDUCING CALLS

• Algorithm logic improvement

• Inlining (inline, flatten)

“Q: Do inline functions improve performance?
А: Yes and no. Sometimes. Maybe.”

isocpp.org FAQ

% of Instructions
out of total

Instructions
per call

% of calls
inlined

Task
speedup

Total
speedup

CalcOrigin
(Digitizer Task)

4.8 18 100 4.2% 1.9%

GetCij
(ClusterFinder Task)

12 380 90 -1.2% -6.3%

Example from MPDRoot codebase

PREMATURE OPTIMIZATION

“Premature optimization is the root of all evil”

Donald Knuth (TeX), Tony Hoare (quicksort)

Rules of optimization:
Rule 1: Don’t do it.
Rule 2 (for experts only): Don’t do it yet.

WHEN TO OPTIMIZE

GETTING THE SD PROCESS UNDER CONTROL

• Code Ownership within GitLab - already developed

CODEOWNERS FILE - detector owner(s)
- reconstruction owners
- system scripts owners

Ownership of other directories to be assigned in the future – generators, geometry, physics analysis, QA,
macros, system config

Benefits - code review by competent developers
- no arbitrary merges
- less trash code

“The art of programming (software development) is the art of organizing complexity,

of mastering multitude and avoiding its bastard chaos as effectively as possible.”

E. Dijkstra

IMPROVING CODE QUALITY

“We rarely put defects directly, instead we set up conditions
that trick us into putting in defects later”

How to prevent this?

• Testing environment – in progress (critical, the very first thing to do)

• Removal of unused detectors – nearly finished (one left)

• Directory restructuring to reflect multilevel hierarchy - in progress

• Dead code identification & cleanup – to be done

• Automatic code formatting – to be done

• Documentation – in progress

TESTING IN DEVELOPMENT (NEW CODE)

EFFICIENT DEVELOPMENT CONSISTS OF

1. Define module’s (algorithm) external behavior

2. Develop working prototype

3. Refactor

- improve code structure
without changing its external behavior

Achieved by WRITING TESTS TO
- Force proper modularization

- Force proper abstraction

- Force clear separation into OO and procedural parts

TESTING ENVIRONMENT

CONSTRUCTION TESTING ACTIVITIES

Single step testing

- Stepping through the code with the debugger

Unit testing

- Smallest thing that can be automatically tested, like method (subroutine)

Component testing

- Testing of aggregate of units

- Automated, often with use of mocks, stubs, fixtures

Bench testing

- Testing of the component in the entire system

TESTING ENVIRONMENT (LEGACY CODE)

COMMON STRATEGIES TO ADD TESTS

• Error-prone areas of the system

• High-fan parts, afferent coupling metrics

• Critical modules

• Often changed areas

• Any time code is modified

TECHNICAL REALIZATION

• Toolset – mocks, stubs, fixtures – dependency injection

• Integrated with build system / executed after each build

• Ability to run on demand with custom parameters

• Incremental refactoring to increase testability (decoupling, interfaces)

• Root cause analysis

Thank You !

Q & A

