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Introduction

It was proposed by A. Bialas 
and R. Peschanski 
(Nucl. Phys. B 273 (1986) 
703) to study the 
dependence of the 
normalized factorial 
moments of the rapidity 
distribution on the bin size 
δy:

1. if fluctuations are purely 
statistical no variation of 
moments as a function of 
δy is expected

2.observation of variations 
indicates the physics 
nature of the fluctuations

F i=M
i−1

×⟨

∑
j=1

M

k j×(k j−1)×...×(k j−i+1)

N×(N−1)×...×(N−i+1)
⟩

y = δ Dy/M
M — number of bins
Dy — size of midrapidity 
window
N — number of particles 
in Dy
kj-the number of particles 
in bin j

Note: there is a set of 
definitions of moments and 
cumulants.

M = 1

M = 2

M = ...

Δy
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What do we see with 
factorial moments: 
simplified case

Mathematical model:

 An random number of particles 
per event organized in groups 

 Groups are distributed 
uniformly along Dy interval. 

 Each group has the random 
number of particles. 

 Consider two cases:

 Point-like group - all particles 
inside group have the same y, 

 Non-point-like group - 
particles are distributed over y 
with respect to the group 

center 

 number of groups per event is Poissonian

 number of particles per group has geometrical distribution.

Multiplicity distributions of particles in Dy interval is:

  

Point-like groups Non-point-like groups 
with width s

M = 1

M = 4
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Simple examples: point-like and non-point-like groups

Independent production of particles with 
Poisson distribution leads to F

i
(M) = 1.

Under hypothesis of independent point-like 
groups F

i
(M) grows as polynomial of order 

(i-1)

For non-poin-tlike group with width s.
Fi (M) = constant when  dy = DY/M << s

Several processes with different characteristic 
widths (s1>s2>..>sN) the factorial moments are 
increasing untill  dy = DY/M << sN

The power of growth 
depends on
 Mean number of 

groups
 Mean number of 

particles per 
group

 Characteristic 
widths of groups
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7.7 GeV

11.5 GeV

Factorial moments: AuAu, UrQMD+vHLLE

F2Max

♦ Different energy dependence 
is expected for Crossover 
and 1st order phase transition

♦ There is a mild dependence 
on centrality for 1st order 
phase transition 5

Particles with p
t
>0.5 and |η|<1



Models comparison: UrQMD, UrQMD+vHLLE, HYDJET++

 UrQMD, HYDJET++ 
are comparable with

       vHLLE+UrQMD 
       crossover

 Change of 
 Multiplicity 
 volume size
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Selection conditions

Generated:
 pt>0.5, |η|<1

 Tracks from Primary Interaction 

 p, π, k, Σ

The consideration included events 
under the conditions:

 Impact parameter < 3.3

 Number of tracks > 500
Reconstructed:

 pt>0.5, |η|<1

 π: mTOF < 0.4

 K: 0.4 < mTOF < 0.8

 p: 0.8 < mTOF

 In case the track has no mTOF, it was assumed 
that  m=mπ 
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Tracking resolution
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φ resolution for p

φ resolution for π

φ resolution for K

η resolution for p

η resolution for π

η resolution for K

p
t
 resolution for p

p
t
 resolution for π

p
t
 resolution for K

σ = 3·10-3 

σ = 3·10-3 

σ = 3·10-3 

σ = 5·10-3 σ = 2·10-2 GeV 

σ = 2·10-3 

σ = 3·10-3 

σ = 1·10-2 GeV

σ = 2·10-2 GeV



Factorial moments: generated 
vs reconstructed tracks

Factorial moments of multiplicity 
distribution in the rapidity interval [-1,1] 9



Reconstructed tracks: efficiency of reconstruction

Since the height of the F
2
 plateau when working with the rapidity interval 

depends on the accuracy of the mass reconstruction using TOF, it was 
decided use pseudorapidity notation instead. 10



Factorial moments: generated 
vs reconstructed tracks

Factorial moments of multiplicity distribution in 
the pseudorapidity interval [-1,1] 11
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Unfolding

1) Main problems:

● Tracking inefficiency

● Tracking purity

● Particles migration between bins due to η finite resolution

2) Unfold <n(n-1)>(η) and <n>(η) for each binning

3) Use package TUnfold for unfolding. Methods for regularization:

● SVD

● d'Agostini

4) Construct F
2
(M) for unfolded distributions



Preparation for unfolding procedure

1) Match reconstructed and generated tracks

2) Prapare responce matrix F(η
gen

, η
rec

) for matched tracks – generated particles,
purity = N

rec matched 
/ N

rec
 , efficiency = N

gen matched
 / N

gen
 for each binning.  

3) Unfolding procedure for each binning

➢Multiply n
rec

(η
rec

) * purity

➢Unfold with responce matrix F to n
true matched

➢Divide n
true matched

 on efficiency
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Preparation to unfolding

Response matrix n
genTracking efficiency and purity

n re
c

The pseudorapidity interval |η|<1 is divided into 10 bins.
Au-Au, XPT, 7.7GeV 

purity

efficiency



Summary:

15

It has been demonstrated that normalized factorial moments as a function of the 
size of the observation interval are sensitive to the type of phase transition.
➢We observe the different energy behaviour for the Crossover and 1st order phase 

transition in the frame of the URQMD+VHLLE model.
➢The energy behaviour is connected to the development of the phase transition 

and hydrodynamical phase itself. Cascade introduces the mild excess to the 
maximum of the normalized factorial moments.

In the case of reconstructed tracks, the behavior of the distributions did not 
change. At the same time, the F

2
(M) values of the distribution reaching a plateau 

increased. 
Using the pseudorapidity interval to construct the factorial moments of the 

multiplicity distribution, it is possible to avoid the influence of the effects arising 
from particle identification. In this case, the behavior of the distributions did not 
qualitatively change in comparison with the case of rapidity. 

Work on the unfolding process has begun. 
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