π⁰/γ separation in SPD ECAL using machine learning approach

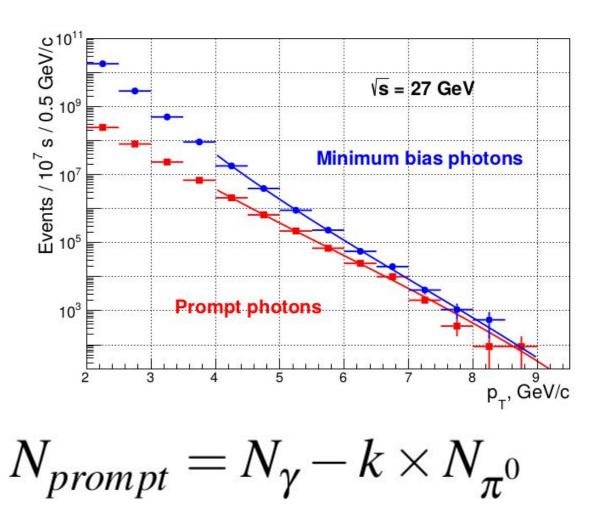
Andrei Maltsev

JINR, Dubna

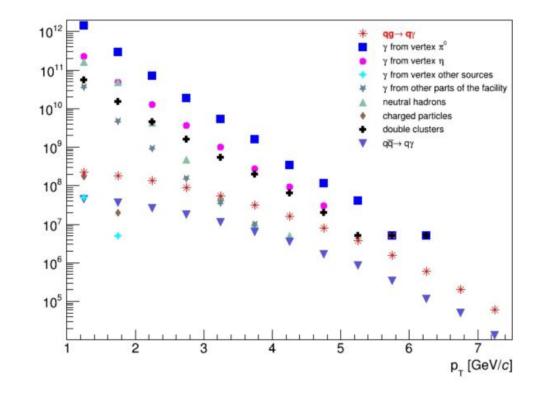
SPD Physics & MC meeting 08.09.2021

1

Measurements with prompt photons



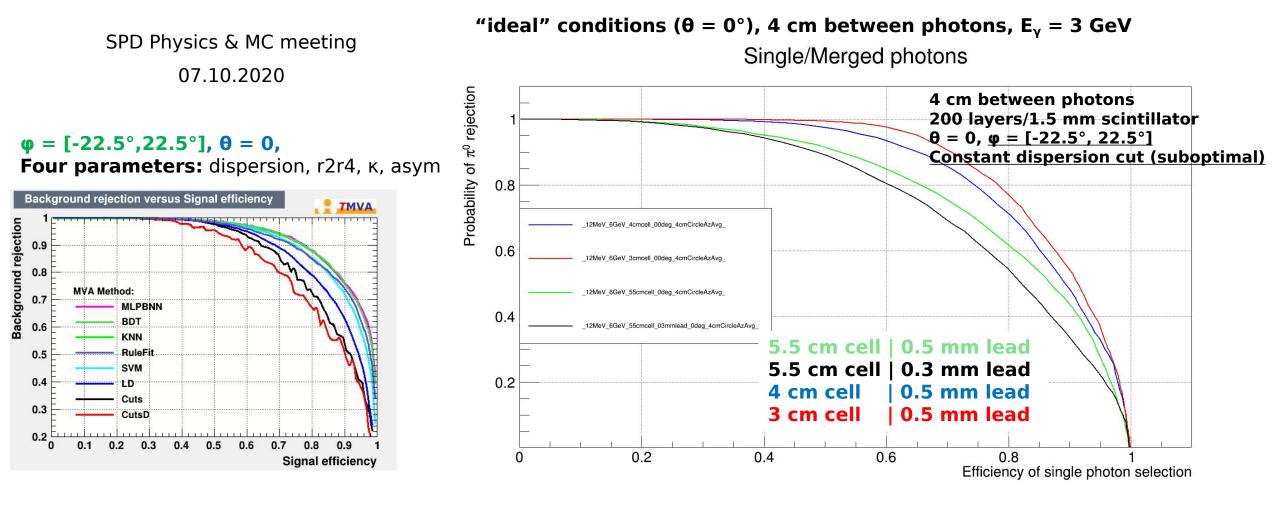
k: ratio of undetected $\pi^0/\eta/...$ decays (from MC) giving "fake" propmpt photons



Important to have good π^0/γ separation:

- fewer undetected π^0 s: less uncertainty on k
- most importantly: larger N_{γ} (errors dominated by statistics at high energies!)

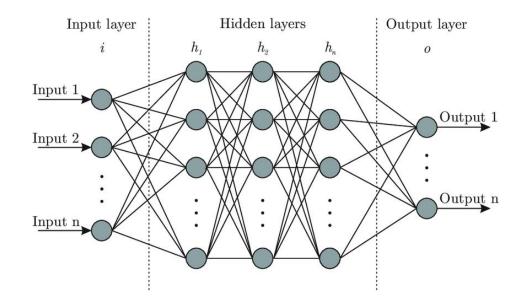
Previous results



cell size ~ distance between photons \rightarrow 80-90% rejection @ 80% efficiency Can we improve it?

Attempt at using a more complex NN

Inspired by the work of Dimitrije Maletic (thanks!) and https://cds.cern.ch/record/2042173



- o $O_i = f(W_{i0} + \sum_{j=1}^{N} W_{ij}O_j) \rightarrow \text{weighted sum} + \text{bias for each node}$ • f: **ReLU** $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ sigmoid for output: $f(x) = \frac{1}{1 + e^{-x}}$
 - **Dropout** (p=0.1),
 - **batchnorm** for each layer (before activation)
 - Binary cross entropy loss (BCE):

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

• Optimizer: Adam (stochastic gradient descent + adaptive moment estimation) (Ir = 0.001, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon=1e-8$

2 hidden layers, 64 neurons each

Inputs

Variables describing moments

$$\begin{aligned} |x_{cog}|_{25} &= \left| \frac{\sum_{i=1}^{25} E_i X_i^{rel}}{S_{25}} \right| & r^2 = < r^2 > = S_{XX} + S_{YY} = \frac{\sum_{i=1}^{N} e_i ((x_i - x_c)^2 + (y_i - y_c)^2)}{\sum_{i=1}^{N} e_i} \\ |y_{cog}|_{25} &= \left| \frac{\sum_{i=1}^{25} E_i Y_i^{rel}}{S_{25}} \right| & S_{XX} = \frac{\sum_{i=1}^{N} e_i (x_i - x_c)^2}{\sum_{i=1}^{N} e_i}, \quad S_{YY} = \frac{\sum_{i=1}^{N} e_i (y_i - y_c)^2}{\sum_{i=1}^{N} e_i}, \\ S_{XY} = S_{YX} = \frac{\sum_{i=1}^{N} e_i (x_i - x_c) (y_i - y_c)}{\sum_{i=1}^{N} e_i}, \quad \kappa = \sqrt{1 - 4 \frac{S_{XX} S_{YY} - S_{XY}^2}{(S_{XX} + S_{YY})^2}} = \sqrt{1 - 4 \frac{\det S}{\operatorname{Tr}^2 S}} \end{aligned}$$

Energy distribution

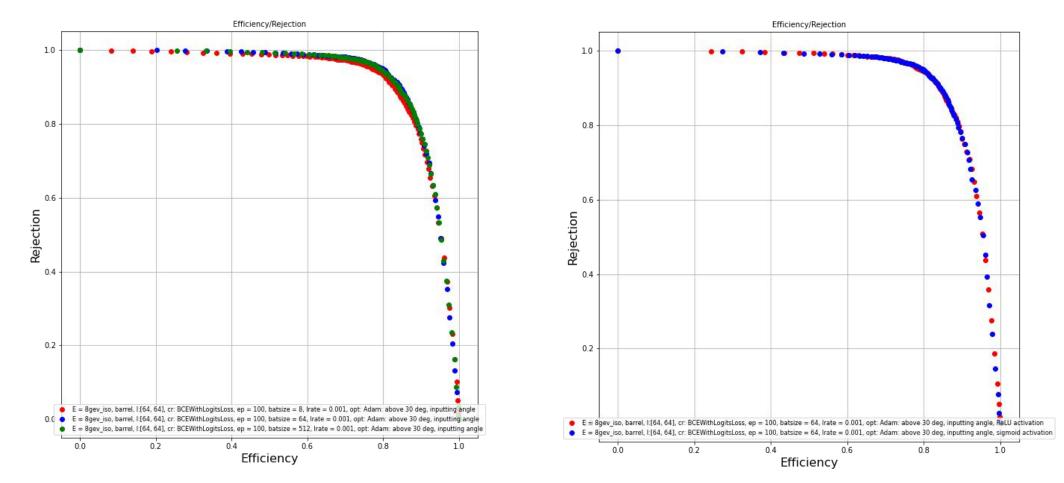
$$\frac{S_1}{S_9} \qquad \frac{S_9 - S_1}{S_{25} - S_1} \qquad \frac{M_2 + S_1}{S_4} \qquad \frac{S_6}{S_9} \qquad \frac{M_2 + S_1}{S_9}$$

Angle θ as an input variable (improves separation at high energies) Total energy

 $\begin{array}{l} X,Y \sim \theta, \phi \\ S_1, \, M_2 \, - \, 1 st \mbox{ and } 2 nd \mbox{ largest energies} \\ S_9, \, S_{25} \, - \, energy \mbox{ in } 3 x 3, \, 5 x 5 \mbox{ region} \\ S_6 \, - \, maximum \mbox{ energy in } 3 x 2 \mbox{ region containing } S_1 \mbox{ and } M_2 \end{array}$

14 inputs Dataset: $2/3 \rightarrow \text{train}$, $1/3 \rightarrow \text{test}$

Hyperparameters (sanity check)

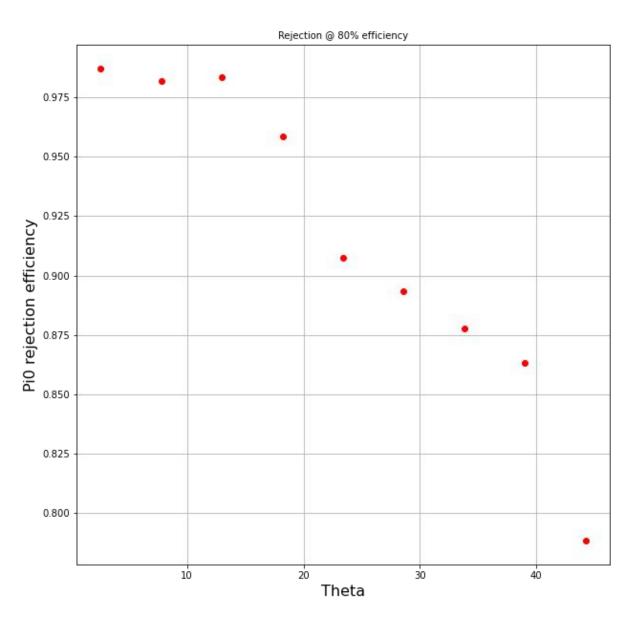


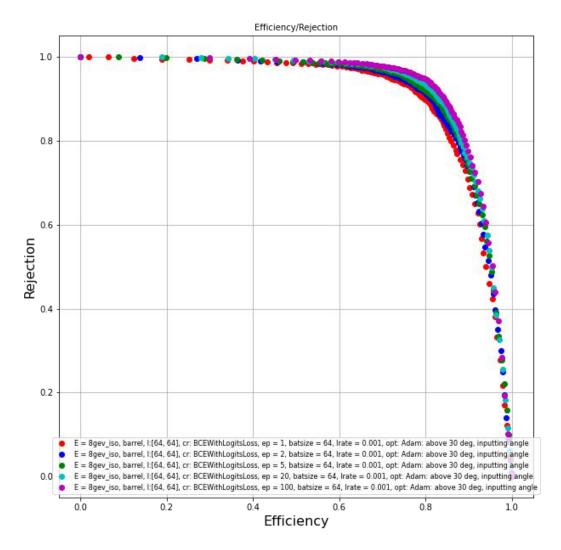
Checked different hyperparameters/network settings:

- batch size
- number of training epochs
- activation function (ReLU/sigmoid)

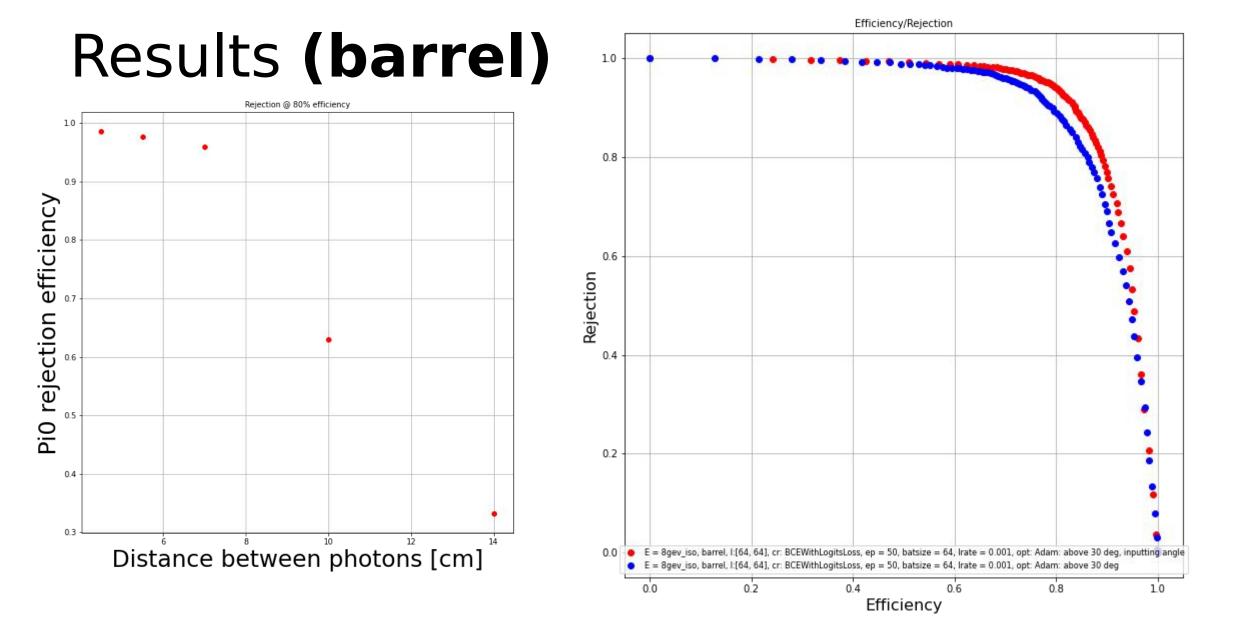
- learning rate
- loss function (BCE/MSE)
- number of layers and neurons

Results (barrel)





- ~98% π^{o} rejection (at 80% γ efficiency) at small angles
- ~80% for larger angles



 π^{0} detection inefficiency attributed to soft photon, or a photon hitting barrel edge on the border with the endcap

Conclusions and outlook

- ~98% π^0 rejection @ 80% efficiency for 8 GeV photons and low incident angles, ~80% π^0 rejection for high angles
- Some part of $\pi^{\scriptscriptstyle 0}$ detection inefficiency attributed to soft photon hitting barrel edge: to be studied
- Efficiency could be overestimated due to fixed energy: to be studied

To do:

- repeat the analysis for endcaps (slightly different cell size)
- study dependence on energy of particle
- determine the best set of inputs
- determine a better metric?

