First experiments with RIBs at ACCULINNA-2 fragment-separator

Vratislav Chudoba for ACCULINNA-2 collaboration

ACCULINNA-2

Status of works since 2018

Isotope	2018 - 2020				
	Task, reaction, method	Status			
⁶ He	Elastic and inelastic scattering in ⁶ He+d	B. Zalewski thesis, NIM_B			
	interaction				
⁶ H and ⁷ H	Low energy spectra and decay modes, ⁸ He+d	PRL, PRC, Bulletin of RAS			
⁸ Li and ⁹ Li	Reference reactions (d,⁴He) and (d,³He) with	To be published soon			
	¹⁰ Be				
⁷ He	Low energy spectra, ⁶ He(d,p) ⁷ He, p- ⁶ He-n	To be published soon			
	coincidences				
°He	", [®] He(d,p) [®] He, p- [®] He-n coincidences	Under analysis			
¹⁰ Li	", ["] Li(d,p) ¹⁰ Li, p- ["] Li-n coincidences	Bulletin of RAS (method),			
		data under analysis			
²⁷ S	Rare decay modes, implantation into OTPC	Under analysis			
	Detector tests (PPAC, ToF, Si, etc.)	Under analysis			
⁷ H, ¹⁰ He,					
¹⁶ Be, ¹⁷ Ne, ²⁶ S	Since 2023				

Characteristics of obtained RIBs

lon	E, AMeV	Reaction	l, pps	P, %	∆ p, ±%
۴He	29	¹¹ B(33.5 AMeV)+Be(1 mm)	2.2*10 ⁶	90.2	2.0
⁸ He	28	"	5.5*10 ⁴	95.4	3.25
⁹ Li	31	"	5.0*10 ⁵	97.6	2.0
¹⁰ Be	45	¹⁵ N (49.3 AMeV)+Be(1 mm)	2.3*10 ⁶	78.4	1.25
²⁶ P	28	³² S (52.7 AMeV)+Be (0.5 mm)	15	<0.5	0.75
²⁷ S	27	"	60	1	0.75

Real basic RIBS characteristics are in a good agreement with technical specifications and estimations.

object of interest: 7H

- the heaviest conceivable hydrogen isotope
- the largest A/Z = 7 ratio
- special stability of ⁷H due to the closed p_{3/2} neutron subshell
- "true" five-body core+4n decay channel of the g.s.
- extremely long-living g.s. of ⁷H expected
 - candidate for 4n radioactivity if $E_{\tau} < 100-300$ keV
 - small width of g.s. (0.1-10 keV) expected even for E_{τ} = 2 MeV
- anticipated specific correlations of fragments for core+4n decay

Prerequisites for successful search of ⁷H

- reliable channel identification
- suppression of background
- high energy resolution

3**H**

key advantage: ³H momentum reconstruction

⁸He(d,³He)⁷H

in inversion

kinematics

³He

Experiment 1, 2018 2 weeks

Channel identification

Si detectors

Calibration reaction

¹⁰Be(d,³He)⁹Li

- ¹⁰Be at 42 AMeV
- Independent MM calibration with ¹⁰Be beam
- MC simulations validated by the comparison ⁹Li data

MM spectrum: Exp1

- kinematical "triangle" cuts reduce the backgrounds
- ground state at 1.8(5) MeV
- excited state at 6.5(5) MeV
 - possibly 5.5-7.5 MeV doublet
- some evidence for ⁷H excited state at 11 MeV

Bezbakh et al., **Phys.Rev.Lett.** 124, 022502 (2020)

MM spectrum: Exp2

- ⁷H ground state at 2.2(5) MeV
- ⁷H excited state at 5.5(3) MeV (possibly doublet at 5.5-7.5 MeV)
- peak at 11(3) MeV
- reaction c.m. angle cutoff θ_{cm} <18° provides especially safe result for the ⁷H g.s.

Muzalevskii et al., Physical Review C 103, 044313 (2021)

MM spectra

- consistent results in 2 independent JINR experiments
- consistent with data of Nikolskii et al.
- level- and decay-scheme for the ⁷H

Reaction angle distributions

- Exp1 second diffraction maximum is populated for the ⁷H g.s.
- Exp2 planned to populate the forward peak for the ⁷H g.s.
- gap in the data from 9 to 14 degrees observed in the second data

- reflection of the specific dynamics of true five-body decay
- obtained in independent way

Both patterns consistent with correlated emission of tritons expected for **true five-body** decay "Satellite" data on ⁶H from ²H(⁸He,⁴He)⁶H

- setup not suitable for this reaction channel
- higher cross section
- higher statistics
- large background
- neutron coincidences data

Nikolskii et al., arXiv:2105.04435

"Satellite" data on ⁶H from ²H(⁸He,⁴He)⁶H

- setup not suitable for this reaction channel
- higher cross section
- higher statistics
- large background
- neutron coincidences data

Nikolskii et al., arXiv:2105.04435

Calibration reaction

¹⁰Be(d,⁴He)⁸Li

- 3⁺ state found at expected energy
- check of detection eff.

Preliminary results on ⁶H

- State at ~2.6 MeV not observed
- Resonance at 6.5 MeV
- Possible resonance at 4.5 MeV

Setup for the study ⁷He, ⁹He and ¹⁰Li isotopes in the reaction (d,p)

More info in P. Sharov's talk, Wednesday

 $\label{eq:height} {}^{^{6}}\text{He}(d,p){}^{^{7}}\text{He} \rightarrow n + {}^{^{6}}\text{He} \\ {}^{^{8}}\text{He}(d,p){}^{^{9}}\text{He} \rightarrow n + {}^{^{8}}\text{He} \\ {}^{^{9}}\text{Li}(d,p){}^{^{10}}\text{Li} \rightarrow n + {}^{^{9}}\text{Li} \\ \end{array}$

Prospects

Experiment with new targets (since 2023)

- Transfer reactions on ³He target
 - ¹³O(³He,n)¹⁵Ne
 - ²⁴Si(³He,n)²⁶S
- Transfer reactions on ³H target
 - ⁸He(t,p)¹⁰He
 - ¹⁴Be(t,p)¹⁶Be
 - ⁸He(t, α)⁷H
- Charge-exchange reactions
 - (p,n), (³He,³H), (³H,³He)

Our team

¹Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia ²Institute of Physics, Silesian University in Opava, 74601 Opava, Czech Republic ³National Research Centre "Kurchatov Institute", Kurchatov sq. 1, 123182 Moscow, Russia ⁴National Research Nuclear University "MEPhI", 115409 Moscow, Russia ⁵Dubna State University, 141982 Dubna, Russia ⁶Heavy Ion Laboratory, University of Warsaw, 02-093 Warsaw, Poland ⁷GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ⁸II. Physikalisches Institut, Justus-Liebiq-Universität, 35392 Giessen, Germany ⁹Laboratory of Information Technologies, JINR, 141980 Dubna, Russia ¹⁰Institute of Nuclear Physics, 050032 Almaty, Kazakhstan ¹¹Nuclear Research Institute, 670000 Dalat, Vietnam ¹²Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna, Russia ¹³AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland ¹⁴Institute of Nuclear Physics PAN, Radzikowskiego 152, 31342 Kraków, Poland ¹⁵Department of Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

Conclusions

- 9 isotopes investigated during a first period (2018-2020)
- a long-term problem of quest for ⁷H g.s. investigated
- complicated experiment, extremely low cross section and low statistics
- preliminary results on ⁶H g.s. in contradiction with previous works
- neutron registration strongly increase quality of the ⁶H data
- calibrations confirmed by ¹⁰Be(²H,³He)⁹Li and ¹⁰Be(²H,⁴He)⁸Li reaction
- true 4n decay reliably observed for the first time
- material for 3 PhD theses acquired for the moment

Appendix: Full setup

Appendix: Identification of ³He

Appendix: Identification of ³He

a20_1_un:a1_1 {flag1}

I. Muzalevski et al., Bull.Rus.Acad.Sci.: Phys., 84, 500 (2020)

Appendix: Energy levels

Appendix: Background measurement

Appendix: Background measurement

- Empty target events are located mainly outside the energy ranges of interest
- Only hypothetical 11 MeV state can be contaminated
- Reaction cm angle cutoff qcm < 18 dgr is expected to provide ⁷H spectrum free from empty target background

Appendix: Experimental resolution

- complete MC simulations to check the detection setup
- higher energy
 resolution than in
 the previous
 experiments (less
 than 1 MeV) is
 obtained

Appendix: Resolution

Energy and angular resolutions

E_T	$2.2 {\rm ~MeV}$		$5.5 { m MeV}$		$11 { m MeV}$		$14 { m MeV}$	
10°	0.95	2.2	0.73	2.3	0.48	2.5	0.38	2.8
20°	1.10	1.6	0.93	1.8	0.64	2.2	0.52	2.6
30°	1.13	1.2	0.99	1.3	0.77	1.8	0.69	2.0

Appendix: CMS angular distributions

Theoretical FRESCO calculations

- Standard calculation diffraction minimum is sitting on top of the maximum in the data.
- To fit the position of diffraction minimum the non-standard calculation conditions should be used:
 - extreme peripheral transfer
 - large absorption

Interpretation

consistent with expected very "fragile" character of ⁷H g.s. and very small g.s. population cross section.