Leonid Grigorenko

http://aculina.jinr.ru/

JINR 114 Flerovium Dubna

Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

The prospective scientific program of the ACCULINNA-2 fragment-separator

D1 F2 D2 RF kicker F3 CCULINNA-2 F3 Cero-angle spectrometer hysical target Including tritum

New Trends in Nuclear Physics Detectors (NTNPD-2021), 25-27 October, 2021, Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland Flerov Laboratory of Nuclear Reactions (FLNR) at Joint Institute for Nuclear Research (JINR)

Flerov Laboratory of Nuclear Reactions (FLNR)

New facilities at FLNR

ACCULINNA-2 fragment-separator

Light RIB studies at FLNR

Flerov Lab: "Superlights" – fragment separator ACCULINNA

Flerov Lab: Superlights – fragment separator ACCULINNA

Predecessors

Single achromatic spectrometers

Acculinna-2 layout

Direct reactions

Direct reactions

Very few degrees of freedom are involved

The reaction mechanism is well approximated by a single-pole picture: one vertex, one interaction

Competitive light nuclei RIB program at FLNR 1. Field of studies

Competitive light nuclei RIB program at FLNR 2. Correlations and few-body dynamics studies

Few-body dynamics near the driplines, Correlations in the few-body decays: additional degrees of freedom

Few-body dynamics at the driplines is consequence of (i) clusterization and (ii) paring

Exotic phenomena near driplines: Haloes (green) True 2p/2n decays (red) 4p/4n emitters (blue) NOT INVESTIGATED (gray)

NOT SO EXOTIC: More or less every second isotope in vicinity of the driplines has features connected to few-body dynamics

CM angular distributions for the direct reactions

CMS correlations of the recoils or products

For fixed energy of the product transferred momentum q and cms angle are trivially connected

Simple systematics of diffraction minima and maxima as function of the momentum transfer

Opportunity of spinparity identification

Example: ⁶Be studied in the ⁶Li(p,n)⁶Be -> α +p+p reaction

Correlations in the momentum transfer frame for direct reactions

Correlations in the "zero geometry" reactions populating continuum states

- Correlations in the zero geometry transfer reactions.
- Classics of alpha-cluster state studies
- First alpha-particle is measured at zero angle.
- Then completely aligned intermediate state is populated.
- Then for second alpha-particle the angular distribution is $|P_L^{0}(\cos\theta)|^2$ where *L* is angular momentum of intermediate state.

Prof. M. Golovkov pioneered this approach for RIB research

Correlations in direct reactions populating continuum states

$$\left\{ \left[\Delta \mathbf{L} \times \mathbf{q} \right] \equiv 0, \, z \parallel \mathbf{q} \right\} \quad \rightarrow \quad M_{\Delta L} \equiv 0.$$

L.V. Grigorenko *et al.,* Physics-Uspekhi 59 (2016) 321 Experimental review, 60-th anyversary of FLNR Selected direction in reactions – beam axis

There is extra selected direction in direct reactions – momentum transfer

There is typically large alignment of the final state in most direct reactions

Works well for (i) one-step (single-pole approximation) direct reactions and (ii) small spin transfer

If we have continuum state we have alternative way to identify spin-parity

Experimental bias: Acceptance + Resolution + Physical backgrounds

MC simulations in density matrix formalism

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_{\parallel}\,\mathrm{d}q_{\perp}\,\mathrm{d}E_{\mathrm{T}}\,\mathrm{d}\Omega} \sim \sum_{SM_{S}}\sum_{JM,J'M'}\rho_{JM}^{J'M'}(q_{\parallel},q_{\perp},E_{\mathrm{T}})\times$$

$$\times A^{\dagger}_{J'M'SM_S}(E_{\mathrm{T}},\Omega) A_{JMSM_S}(E_{\mathrm{T}},\Omega) \,.$$

$$\Omega o \Omega_2 = \left\{ heta, \phi
ight\},$$

$$\Omega \to \Omega_5 = \{\varepsilon, \Omega_{kx}, \Omega_{ky}\} = \{\varepsilon, \theta_k, \alpha, \beta, \gamma\}.$$

Example: of ⁹H studied in ²H(⁸He,p)⁹H -> ⁸He+n reaction: From correlations to spin-parity identification

M.S. Golovkov et al. PRC **76** (2007) 021605(R)

- Due to M = ± 1/2 population the interference leading to backward-forward asymmetry is possible only for { $s_{1/2} p_{1/2}$, $p_{1/2} d_{5/2}$, $p_{3/2} d_{3/2}$ } interference patterns
- ▶ Low energy distributions $s_{1/2} p_{1/2}$ interference → $p_{1/2}$
- ▶ Distribution E > 3.5 MeV: higher polynomial → d-wave. Asymmetry → $d_{5/2}$
- > Set of states is uniquely identified as $\{s_{1/2} p_{1/2} d_{5/2}\}$

Recent ⁷He → ⁶He + n experiment at ACCULINNA-2, (d,p) reaction, see report of P. Sharov

Prospects of analogous studies in the other neutron and proton emitters

Correlations in the direct reactions populating continuum

2-body decays: are defined by 2 parameters - energy and width

2-body reactions: additional "external" correlation angle θ

3-body decays: 2-dimensional "internal" 3-body correlations: $\{k_x/k_y, \theta_k\}$

3-body reactions: additional 3-dimensional "external" correlations described by Euler $\{\alpha, \beta, \gamma\}$

Three-body correlations in the momentum transfer frame for direct reactions:

«External correlations»

Cryogenic tritium gas system at ACCULINNA

Two units move to the neutron-rich region in (t,p) reaction

Background free experiments, easy variation of target thickness

Available only in military laboratories

Nice example of military technology conversion for fundamental science conversion

Truly unique item providing important scientific opportunities

Example: ⁵H studied in the ³H(t,p)⁵H -> t+n+n reaction

en of the second

Complete fit

 θ_t (dgr)

 θ_t (dgr)

A.A. Korsheninnikov, 2001, ⁶He(p,2p)⁵H Discovery of ⁵H at FLNR

M.S. Golovkov, 2004, Pioneering correlation studies

A.A. Korsheninnikov et al., PRL 87 (2001) 92501.
M.S.Golovkov et al., PLB 566 (2003) 70.
M.S.Golovkov et al., PRL 93 (2004) 262501.
S.V. Stepantsov et al., NPA 738 (2004) 436.
M.S.Golovkov et al., PRC 72 (2005) 064612.

- Poor population of ground state. However, correlations provide enough selectivity: quantum amplification
- ⁵H ground state position is finally established; the excited state is established as 3/2⁺-5/2⁺ degenerate mixture

Example: ¹⁰He studied in the ⁸He(t,p)¹⁰He -> ⁸He+n+n reaction

"Conundrum nucleis" second double magic in nuclide chart

Discovered by Korsheninnikov et al. in 1994 in RIKEN giving E_{τ} =1.2 MeV

M.S. Golovkov *et al.,* PLB **672** (2009) 22 S.I. Sidorchuk *et al.,* PRL **108** (2012) 202502

Three-body correlations were studied in ⁵H basing on outstanding statistics. Can be something useful done with really exotic systems and limited statistics?

New ground state energy for ¹⁰He: E_{τ} =2.0-2.5 MeV Shell structure breakdown in ¹⁰He New cryogenic tritium gas system under construction; commissioning in the end of 2022 expected

Prospects of analogous studies for ¹⁰He, ¹³Li, ¹⁶Be

Three-body correlations in the direct reactions:

"External" vs "Internal" correlations

Example: ⁶Be studied in the ⁶Li(p,n)⁶Be -> α +p+p reaction

Example: ⁶Be studied in the ⁶Li(p,n)⁶Be -> α +p+p

V. Chudoba et al., PRC C 98, 054612 (2018)

From known level scheme to complete quantum mechanical information (density matrix parameters as function of energy and cm angle)

TABLE I. The best fit to experimental data of density matrix parameters for different $\{E_T, \theta_{Be}\}$ ranges. The fits were found using the figures with θ_{α} distribution for all six configurations of the theoretical model.

E_T (MeV)	$\theta_{\mathrm{Be}} \in (45, 60)^{\circ}$	$\theta_{\mathrm{Be}} \in (60,75)^{\circ}$	$\theta_{\mathrm{Be}} \in (75, 90)^{\circ}$	$\theta_{\mathrm{Be}} \in (90, 120)^{\circ}$
1.4 - 1.9	AL; $\varphi_{02}=135^{\circ}$	AL + 50% NA; φ_{02} =180°	AL; $\varphi_{02}=180^{\circ}$	AL + 20% NA; φ_{02} =180°
1.9 - 2.5	AL + 50% NA; $\varphi_{02}=135^{\circ}$	NA + 10% AL; $\varphi_{02}=180^{\circ}$	NA; $\varphi_{02} = 180^{\circ}$	AL + 10% NA; $\varphi_{02}=90^{\circ}$
2.5 - 3.1	NA + 10% AL; $\varphi_{02} = 180^{\circ}$	AL + 10% NA; $\varphi_{02}=180^{\circ}$	NA + 30% AL; $\varphi_{02}=90^{\circ}$	NA; $\varphi_{02}=135^{\circ}$

3He target available with new cryogenic gas system under construction

Transfer and charge exchange reaction campaign exploring the isobaric symmetry aspect on ³He vs ³H target

Prospective ⁷Be \rightarrow ⁷B \rightarrow ⁴He+3n experiment at ACCULINNA-2, (³He,³H) reaction, see report of V. Chudoba Extreme exotic systems at ACCULINNA-2:

⁷H and ⁶H

Is the problem of ⁷H and ⁶H solved?

²H(⁸He, ³He)⁷H reaction

⁸He beam 26 AMeV, 10⁵ pps 2018, two weeks

- Excited state at 6.5 MeV
- Indication of ground state at 1.8 MeV
- May be something at 12 MeV

Evidence for the First Excited State of ⁷H

A. A. Bezbakh,^{1,2} V. Chudoba,^{1,2,*} S. A. Krupko,^{1,3} S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹
A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,6} G. Kaminski,^{1,7} O. A. Kiselev,⁸ D. A. Kostyleva,^{8,9} M. Yu. Kozlov,¹⁰ B. Mauyey,^{1,11}
I. Mukha,⁸ I. A. Muzalevskii,^{1,2} E. Yu. Nikolskii,^{6,1} Yu. L. Parfenova,¹ W. Piatek,^{1,7} A. M. Quynh,^{1,12} V. N. Schetinin,¹⁰
A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13}
G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,7} and M. V. Zhukov¹⁵

⁷H studied in the ²H(⁸He, ³He)⁷H reaction. Second run.

PHYSICAL REVIEW C 103, 044313 (2021)

Resonant states in ⁷H: Experimental studies of the ²H(⁸He, ³He) reaction

I. A. Muzalevskii⁶,^{1,2,*} A. A. Bezbakh,^{1,2} E. Yu. Nikolskii,^{3,1} V. Chudoba,^{1,2} S. A. Krupko,¹ S. G. Belogurov,^{1,4} D. Biare,¹ A. S. Fomichev,^{1,5} E. M. Gazeeva,¹ A. V. Gorshkov,¹ L. V. Grigorenko,^{1,4,3} G. Kaminski,^{1,6} O. Kiselev,⁷ D. A. Kostyleva,^{7,8} M. Yu. Kozlov,⁹ B. Mauyey,^{1,10} I. Mukha,⁷ Yu. L. Parfenova,¹ W. Piatek,^{1,6} A. M. Quynh,^{1,11} V. N. Schetinin,⁹ A. Serikov,¹ S. I. Sidorchuk,¹ P. G. Sharov,^{1,2} N. B. Shulgina,^{3,12} R. S. Slepnev,¹ S. V. Stepantsov,¹ A. Swiercz,^{1,13} P. Szymkiewicz,^{1,13} G. M. Ter-Akopian,^{1,5} R. Wolski,^{1,14} B. Zalewski,^{1,6} and M. V. Zhukov¹⁵

⁸He beam 26 AMeV, 10⁵ pps 2019, 3 weeks

"Comming out party" for the neutron wall

MM spectra and "kinemtical triangles"

- ⁷H ground state at 2.2 MeV
- ⁷H excited state at 5.5 MeV. Could be 5.5-7.5 MeV doublet
- Some evidence for ⁷H excited state at 11 MeV
- "Triangle" cuts reduce the backgrounds.
- Reaction cm angle cutoff θ_{cm} < 18 dgr provides especially safe result for the ⁷H g.s.
- Consistent results in 2 independent JINR experiments.
- Consistent with data of [Nikolskii 2010] obtained in the same reaction within resolution and statistics of older data.

"Satellite" experimental data on ⁶H from ²H(⁸He,⁴He)⁶H

Nikolskii et al.,

arXiv:2105.04435

Double coincidences ⁴He-³H

Triple coincidences ⁴He-³H-n

- Setup is not specially suited for this experiment
- Higher cross section and high statistics (factor 10)
- Large backgrounds (accidental alphas)
- Neutron coincidence data

Preliminary results

Background-subtracted, efficiency corrected

- No ^6H g.s. at 2.6-2-7 MeV
- Resonant state at 6.5 MeV
- Possible resonant state at 4.5 MeV

Excitation spectra relative ³H ground state

Analogies in the excitation spectra relative ³H and ⁵H, ⁴He and ⁶He ground states For ⁷H and ⁶H experiment details see report of V. Chudoba

It seem that it is a good idea to repeat ⁷H studies in the (d,3He) reaction with somewhat improved setup and for ⁶H in strongly revised setup

EXPERT@FRS/SuperFRS

EXPERT@FRS/SuperFRS

EXPERT = Exotic Particle Emission and Radioactivity by Tracking

Example of specific use for double achromatic FS

degrader OTPC gh-resolution studies of HI of stopped ions EXPERT pilot ex

A.S. Fomichev, Russian coordinator of NUSTAR program at FAIR

EXPERT pilot experiments in 2012: studies of systems beyond the proton dripline at FRS

Instrumentation development: (i) silicon microstrip detectors (μSSD), (ii) GADAST, (iii) NEURAD, (iv) OTPC

«Superefficient» experiemnts with superthick targets (up to 50 mm berillium) Second achromat is used as high-resolution spectrometer for HI identification

http://aculina.jinr.ru/ expert.html

EXPERT: EXotic Particle Emission and Radioactivity by Tracking

GSI, FLNR JINR, Warsaw Uni., PTI St.-Petersburg

10 pps

10 pps

10² pps

Studies of exotic decays by OTPC

Prof. M. Pfutzner: new vision of extreme rare processes

CCD 2/3"

- 1000 × 1000 pix
- 12-bits
- image ampl. (× 2000)

MSU 2007: ⁴⁵Fe, 2p-radioactivity

New OTPC at ACCULINNA in 2011

ACCULINNA 2011: ⁸He, β-delayed α-t-n

> GSI 2012: S388, ³¹Ar, β-delayed 3p

p ³¹Ar p p Major results

S

Observation and Spectroscopy of New Proton-Unbound Isotopes ³⁰Ar and ²⁹Cl: An Interplay of Prompt Two-Proton and Sequential Decay

I. Mukha,^{1,2} L. V. Grigorenko,^{3,4,2} X. Xu,^{5,1,6} L. Acosta,^{7,8} E. Casarejos,⁹ A. A. Ciemny,¹⁰ W. Dominik,¹⁰ J. Duénas-Díaz,¹¹ V. Dunin,¹² J. M. Espino,¹³ A. Estradé,¹⁴ F. Farinon,¹ A. Fomichev,³ H. Geissel,^{1,5} T. A. Golubkova,¹⁵ A. Gorshkov,³ Z. Janas,¹⁰ G. Kamiński,^{16,3} O. Kiselev,¹ R. Knöbel,^{1,5} S. Krupko,³ M. Kuich,^{17,10} Yu. A. Litvinov,¹ G. Marquinez-Durán,¹¹ I. Martel,¹¹ C. Mazzocchi,¹⁰ C. Nociforo,¹ A. K. Ordúz,¹¹ M. Pfützner,^{10,1} S. Pietri,¹ M. Pomorski,¹⁰ A. Prochazka,¹ S. Rymzhanova,³ A. M. Sánchez-Benítez,¹¹ C. Scheidenberger,^{1,5} P. Sharov,³ H. Simon,¹ B. Sitar,¹⁸ R. Slepnev,³ M. Stanoiu,¹⁹ P. Strmen,¹⁸ I. Szarka,¹⁸ M. Takechi,¹ Y. K. Tanaka,^{1,20} H. Weick,¹ M. Winkler,¹ J. S. Winfield,¹ and M. V. Zhukov²¹

PHYSICAL REVIEW C 91, 064309 (2015)

β -delayed three-proton decay of ³¹Ar

A. A. Lis,¹ C. Mazzocchi,^{1,*} W. Dominik,¹ Z. Janas,¹ M. Pfützner,^{1,2} M. Pomorski,¹ L. Acosta,^{3,4} S. Baraeva,⁵ E. Casarejos,⁶ J. Duénas-Díaz,⁷ V. Dunin,⁵ J. M. Espino,⁸ A. Estrade,⁹ F. Farinon,² A. Fomichev,⁵ H. Geissel,² A. Gorshkov,⁵ G. Kamiński,^{10,11} O. Kiselev,² R. Knöbel,² S. Krupko,⁵ M. Kuich,^{1,12} Yu. A. Litvinov,² G. Marquinez-Durán,⁷ I. Martel,⁷ I. Mukha,² C. Nociforo,² A. K. Ordúz,⁷ S. Pietri,² A. Prochazka,² A. M. Sánchez-Benítez,^{7,13} H. Simon,² B. Sitar,¹⁴ R. Slepnev,⁵ M. Stanoiu,¹⁵ P. Strmen,¹⁴ I. Szarka,¹⁴ M. Takechi,² Y. Tanaka,^{2,16} H. Weick,² and J. S. Winfield²

Transition from direct to sequential two-proton decay in s-d shell nuclei

T.A. Golubkova^a, X.-D. Xu^{b,c,d}, L.V. Grigorenko^{e,f,g,*}, I.G. Mukha^{c,g}, C. Scheidenberger^{b,c}, M.V. Zhukov^h

Major results

Spectroscopy of excited states of unbound nuclei ³⁰Ar and ²⁹Cl

X.-D. Xu,^{1,2,3} I. Mukha,³ L. V. Grigorenko,^{4,5,6} C. Scheidenberger,^{2,3,*} L. Acosta,^{7,8} E. Casarejos,⁹ V. Chudoba,⁴
A. A. Ciemny,¹⁰ W. Dominik,¹⁰ J. Duénas-Díaz,¹¹ V. Dunin,¹² J. M. Espino,¹³ A. Estradé,¹⁴ F. Farinon,³ A. Fomichev,⁴
H. Geissel,^{2,3} T. A. Golubkova,¹⁵ A. Gorshkov,^{4,16} Z. Janas,¹⁰ G. Kamiński,^{4,17} O. Kiselev,³ R. Knöbel,^{2,3} S. Krupko,^{4,16}
M. Kuich,^{10,18} Yu. A. Litvinov,³ G. Marquinez-Durán,¹¹ I. Martel,¹¹ C. Mazzocchi,¹⁰ C. Nociforo,³ A. K. Ordúz,¹¹
M. Pfützner,^{3,10} S. Pietri,³ M. Pomorski,¹⁰ A. Prochazka,³ S. Rymzhanova,⁴ A. M. Sánchez-Benítez,¹⁹ P. Sharov,⁴
PHYSICAL REVIEW C 98, 064308 (2018)

Deep excursion beyond the proton dripline. I. Argon and chlorine isotope chains

I. Mukha,¹ L. V. Grigorenko,^{2,3,4} D. Kostyleva,^{5,1,*} L. Acosta,^{6,7} E. Casarejos,⁸ A. A. Ciemny,⁹ W. Dominik,⁹ J. A. Dueñas,¹⁰
 V. Dunin,¹¹ J. M. Espino,¹² A. Estradé,¹³ F. Farinon,¹ A. Fomichev,² H. Geissel,^{1.5} A. Gorshkov,² Z. Janas,⁹ G. Kamiński,^{14,2}
 O. Kiselev,¹ R. Knöbel,^{1.5} S. Krupko,² M. Kuich,^{15,9} Yu. A. Litvinov,¹ G. Marquinez-Durán,¹⁶ I. Martel,¹⁶ C. Mazzocchi,⁹
 C. Nociforo,¹ A. K. Ordúz,¹⁶ M. Pfützner,^{9,1} S. Pietri,¹ M. Pomorski,⁹ A. Prochazka,¹ S. Rymzhanova,²
 A. M. Sánchez-Benítez,¹⁷ C. Scheidenberger,^{1,5} P. Sharov,² H. Simon,¹ B. Sitar,¹⁸ R. Slepnev,² M. Stanoju,¹⁹ P. Strmen,¹⁸
 I. Szarka,¹⁸ M. Takechi,¹ Y. K. Tanaka,^{1,20} H

Deep excursion beyond the proton dripline. II. Toward the limits of existence of nuclear structure

L. V. Grigorenko,^{1,2,3} I. Mukha,⁴ D. Kostyleva,^{5,4,*} C. Scheidenberger,^{4,5} L. Acosta,^{6,7} E. Casarejos,⁸ V. Chudoba,^{1,9} A. A. Ciemny,¹⁰ W. Dominik,¹⁰ J. A. Dueñas,¹¹ V. Dunin,¹² J. M. Espino,¹³ A. Estradé,¹⁴ F. Farinon,⁴ A. Fomichev,¹ "iński,^{15,1} O. Kiselev,⁴ R. Knöbel,^{4,5} S. Krupko,¹ M. Kuich,^{16,10} "C. Mazzocchi,¹⁰ E. Yu. Nikolskii,^{3,1} C. Nociforo,⁴ A. K. Ordúz,¹⁷ a,⁴ S. Rymzhanova,¹ A. M. Sánchez-Benítez,¹⁸ P. Sharov,¹ H. Simon,⁴ [Szarka,¹⁹ M. Takechi,⁴ Y. K. Tanaka,^{4,21} H. Weick,⁴ M. Winkler,⁴ X. Xu,^{22,5,4} and M. V. Zhukov²³ D. Kostyleva,^{1,2,*} I. Mukha,¹ L. Acosta,^{3,4} E. Casarejos,⁵ V. Chudoba,^{6,7} A. A. Ciemny,⁸ W. Dominik,⁸ J. A. Dueñas,⁹ V. Dunin,¹⁰ J. M. Espino,¹¹ A. Estradé,¹² F. Farinon,¹ A. Fomichev,⁶ H. Geissel,^{1,2} A. Gorshkov,⁶ L. V. Grigorenko,^{6,13,14} Z. Janas,⁸ G. Kamiński,^{15,6} O. Kiselev,¹ R. Knöbel,^{1,2} S. Krupko,⁶ M. Kuich,^{16,8} Yu. A. Litvinov,¹ G. Marquinez-Durán,¹⁷ I. Martel,¹⁸ C. Naczocchi,⁸ C. Nociforo,¹ A. K. Ordúz,²⁵ M. Pfützner,⁸¹ S. Pietri,¹ M. Pomorski,⁸ A. Prochazka,¹ S. Rymzhanova,⁶ A. M. Sánchez-Benítez,¹⁹ C. Scheidenberger,¹² H. Simon,¹ B. Sita,²⁰ R. Slepnev,⁶ M. Stanoiu,²¹

P. Strmen,²⁰ I. Szarka,²⁰ M. Takechi,¹ Y. K. Tanaka,^{1,22} H. Weick,¹ M. Winkler,¹

J. S. Winfield,¹ X. Xu,^{23,2,1} and M. V. Zhukov²⁴

$^{12}Ca \rightarrow ^{9}Ca \rightarrow ^{34}Ca \rightarrow ^{32}Ar+2p$ experiment

${}^{40}Ca \rightarrow {}^{35}Ca \rightarrow {}^{34}Ca \rightarrow {}^{32}Ar+2p$ experiment

New experimental ideas for QFS experiments at ACCULINNA-2 with EXPERT technologies

Look forward for new experoiements at

ACCULINNA-2 and EXPERT@FRS!