Toward event reconstruction in an active-target TPC with strip readout

Mateusz Fila on behalf of the Warsaw ELITPC group

Faculty of Physics, University of Warsaw, Poland

NTNPD-2021

Processing data from TPC developed at UW

Detector design \rightarrow talk by Mikolaj Cwiok Experiments at IFJ PAN \rightarrow talk by Zenon Janas

Filtering

Our data contains various topologies of events.

Rather than 3D picture our detector registers only 2D projections on strip directions sampled over time.

Kinematic reconstruction

Reconstruction should be capable of identifying particles and obtaining their energies and momenta.

Kinematic reconstruction

 $\Delta Z (mm)$

Particle identification, energy and momentum can be obtained from:

- track length (range in medium)
- ionization along the track (Bragg curve)

Manual reconstruction

Line detection – examples

Hough, P. V. C., Conf. Proc. C 590914 (1959)

OpenCV tutorial

https://github.com/gchlebus/tennis-court-detection

road line detection example

Hough transformation

• Hough transformation: $(x, y) \rightarrow (\rho, \theta)$

 A single line on the picture is mapped to a point in the parametric space.

Hough transformation

- A single point on the picture is mapped to a sinusoid in the parametric space.
- Sinusoids corresponding to collinear points have common crossing point.

Hough transformation

- Hough accumulator: (ρ, θ) histogram
- Maxima in the accumulator corresponds to the lines on the picture

Reconstruction algorithm

Hit seeds

based on algorithm used in ICARUS detector

Reconstruction algorithm

Line detection

3D-segments fitting

Summary

- Ionization tracks left by charged particles can be used to reconstruct the event kinematics.
- Computer vision algorithms can be applied to automatize particle track detection.
- Automatic reconstruction of events is under development.

This scientific work is supported by the Polish Ministry of Science and Higher Education from the funds for years 2019-2021 dedicated to implement the international co-funded project no. 4087/ELI-NP/2018/0, by University of Connecticut under the Collaborative Research Contract no. UConn-LNS_UW/7/2018 and by the National Science Centre, Poland, under Contract no. UMO-2019/33/B/ST2/02176.