

ELIADE gamma ray spectrometer for NRF Experiments at ELI-NP

25 - 27 October 2021

Dmitry Testov

Photo-Nuclear Reactions

Photo-Nuclear Reactions

Characteristic Response of Atomic Nucl. to EM Radiation

NRF methods NRF experiments Day1 Experiment ELIADE γ spectrometer To take home

Collaborators

Photons from Laser Compton Backscattering (LCB)

• ,,monoenergetic" $\gamma\text{-beam}$ < 20 MeV

- ${\small \bullet}~$ bandwidth ${\sim}0.5\%$
- $10^8 photons/s$
- tunable energy
- Almost 100% linearly polarized beam

NRF experiments

Day1 Experiment

ELIADE γ spectrometer

Collaborators

Photons from Laser Compton Backscattering (LCB)

 $\bullet\,$,,monoenergetic" $\,\gamma\text{-beam}\,<\,20\,\,\text{MeV}$

- 10^8 photons/s
- tunable energy
- Almost 100% linearly polarized beam

- Populate excited states by resonant scattering of γ rays
- Measure total (Γ) and partial (Γ_f) level widths following γ decay
- Narrow bandwidth: selective population
- Scan for new resonances
- Completely model independent measurements
- Very clean angular distributions for J^{π} measurements

Photons from Laser Compton Backscattering (LCB)

- ,,monoenergetic" $\gamma\text{-beam}$ < 20 MeV
- ${\small \circ \!\!\!\circ }$ bandwidth ${\sim \!\!\! 0.5\%}$
- 10^8 photons/s
- tunable energy
- Almost 100% linearly polarized beam

- Populate excited states by resonant scattering of γ rays
- Measure total (Γ) and partial (Γ_f) level widths following γ decay
- Narrow bandwidth: selective population
- Scan for new resonances
- Completely model independent measurements
- Very clean angular distributions for J^{π} measurements

Photons from Laser Compton Backscattering (LCB) $_{0^+ \rightarrow 1^- \frac{B_1}{2} 0^+}$

- ,,monoenergetic" γ -beam < 2
- ${\ensuremath{\circ}}$ bandwidth ${\sim}0.5\%$
- 10^8 photons/s
- tunable energy
- Almost 100% linearly polarized

- Access to the equation of the state (PDR)
- $\bullet~$ Constrains on matrix elements for $0\nu\beta\beta\text{-decay}$
- Parity violation in Nuclear excitations
- o pn symmetry breaking
- Electric and dipole moments of nucleus
- Photo-response of weakly-abundant nuclei
- Self-absorption measurements
- Cultural heritage studies

Parity violation in ²⁰Ne

- Parity a fundamental symmetry in both the electromagnetic and strong force, but not in weak force
- In the effective nuclear force this can introduce a small parity violating term
- In ²⁰Ne, a 1[±] parity doublet with $\Delta E = 3-4$ keV at 11.2 MeV $\beta \sim 10^{-4}$ as $|J^-\rangle = \alpha |\phi^-\rangle + \beta |\phi^+\rangle$
- $\bullet\,$ Cross section for $1^+ \sim 50$ times higher than 1^-
- $\bullet\,$ Thick ^{20}Ne absorber to remove all 11.259 MeV beam $\gamma\text{-rays}$
- At ELI-NP: 100% linear polarization
- $\bullet\,$ Measure $\scriptscriptstyle\beta$ from angular distributions of 11.255 MeV $_{\rm \gamma}\text{-rays}$

• $\langle 0^+ | T(E1) + T(M1) | 1^- \rangle = \alpha \langle 0^+ | T(E1) | \phi^- \rangle + \beta \langle 0^+ | T(M1) | \phi^+ \rangle$

High-precision measurements: ¹¹B

- Concept of self-absorption can be used for high-precision measurements
- Example: ¹¹B used as a standard for photon flux calibrations
- $\bullet~$ Widths of the lowest lying states known only to precision of 3.4–9.1%
- Concept of self-absorption uses ratios of detected γ -rays with significantly lower systematic uncerainty

High-precision measurements: ¹¹B

- Concept of self-absorption can be used for high-precision measurements
- Example: ¹¹B used as a standard for photon flux calibrations
- $\bullet~$ Widths of the lowest lying states known only to precision of 3.4–9.1%
- Concept of self-absorption uses ratios of detected γ -rays with significantly lower systematic uncerainty

Active interrogation measurements at ELI-NP

Self-absorption concept

In-house developed control system and DAQ for 3D-radiography

G. V. Turturica et al. EPJ Plus (2020) 135:140

- Identification of elemental composition
- Noninvasive, nondestructive 0
- Spatial resolution less than mm in objects up 150 kg
- Nuclear waste management
- Cargo screening/Material identification ۲
- Radioactive source identification
- Metal count in food and in plants •
- Density screening in ill tissue ۲
- Cultural heritage ۲

Activation of ¹⁸⁰^mTa and decay study

Day One Experiment

- $^{180m}_{73}$ Ta is the only naturally occurred isomer
- $\frac{180m}{73}$ Ta $/\frac{180}{73}$ Ta \sim 0.012%
- Nucleosynthesis models fail to account for the <u>observed abundance</u>:

 180m Ta $(\gamma, \gamma')^{180}$ Ta

 $T <<< 3.10^{8} K$

Experiment to find the doorway states, through which the $I^{\pi} = 9^{-}$ through which ^{180m}Ta deexcites (indications for doorway states from bremsstrahlung experiments)

Nine states are suggested in between 1 MeV and 3 MeV, the lowest 1.01 MeV

The detailed knowledge of the doorway states and the flux which passes through them provide a sensitive thermometer for studying the star conditions during the nucleosynthesis.

Day1 Experiment

ELIADE γ spectrometer

To take home

IRF experiments

Day1 Experiment

ELIADE γ spectrometer

To take home

Collaborators

ELIADE γ -ray spectrometer

 $8 \times \text{HPGe}$ Clover (4 \times 90° and 4 \times 135°)

d_{min}=15 cm d_{max}=30 cm

 $\epsilon_{dmin} \approx 6\% \, \mathsf{E}_{\gamma} \sim 1.3 \, \mathsf{MeV} \, (\mathsf{GEANT4})$

Compton Supressed ?!??

+ 4 x LaBr₃ at 90°

Mechanical structure - completed

LN2 system - completed

DAQ - pending...

Detector characterisation - pending...

NRF experiments

Day1 Experiment

ELIADE γ spectrometer

To take home

Collaborator

Details of the ELIADE detectors

- 8 Canberra 4x60x90 Seg32 Clover detectors
- Interested in high-energy γ -rays
- $\bullet~$ Using segmented Clover detectors we can increase $\gamma\text{-ray}$ count rate per detector
- Most low-energy γ -rays interact in the front segments

NRF experiments

Day1 Experiment

ELIADE γ spectrometer

eter To take home

Collaborator

Details of the ELIADE detectors

- 8 Canberra 4x60x90 Seg32 Clover detectors
- Interested in high-energy $\gamma\text{-rays}$
- Using segmented Clover detectors we can increase $\gamma\text{-ray}$ count rate per detector
- Most low-energy γ -rays interact in the front segments
- AGATA core type preamplifiers dual gain: 5 MeV and 20 MeV/fast reset/ differential output
- 32 v1725 CAEN 14 bit 250 MS/s 16 ch digitizers
- 2 v1730 CAEN 14 bit 500 MS/s 8 ch digitizers
- 8 front-end servers

IRF experiments

Day1 Experiment

ELIADE γ spectrometer

Collaborators

DAQ: Conceptual architecture

320 ch (HPGe)

132 ch (Csl, BGO, CeBr₃)

Sub-detector (domain) mechanism

ELIADE γ spectrometer

DELILA data acquisition system at ELIADE

Digital Extreme Light infrastructure Listmode Acquisition

DAQ-Middleware

- Developed by KEK (High Energy Accelerator Research Organization
- Used many experiments at KEK, J-PARC
- Based on a robotics system, good real time operation and reliability
- CAEN digitizers PHA, PSD, waveform implemeted
- QDC (soon)
- Using ROOT to plot and store data
- Browser-based GUI

DELILA at ELIADE

- One event in HPGe channel: Channel number: 1 Byte + digitizer number: 1 Byte; Energy (ADC value): 2 Bytes; Time stamp: 8 Bytes
- Waveform (250 samples): 500 Bytes
- Total: 512 Bytes
- Assuming 10^4 /s per ch 2.6 Gb/s including traces (waveformes)
- ${\small { \bullet } }$ Assuming 10 ${\textstyle ^{4} }$ /s per ch ${\rm ~ 61~Mb/s}$ no traces (${\rightarrow } {\rm ~ 5~Tb/day})$

NRF experiments

Day1 Experiment

ELIADE γ spectrometer

Details of the ELIADE detectors

Sum of 8 segments (1 crystal)

CeBr₃ scintillation detectors

- ELIADE has 4 positions (4 × LaBr₃)
- High Efficiency
- good time resolution (ns)
- reduced pile up at higher countrates

NRF experiments

Day1 Experiment

LN2-system

Valve 2 (Purge Valve) PT100 To Purge Valve 1 (Inlet Valve) Valve 3 9 10 DI 0 D2 D3 D7 . 1 PT100 NI cRIO To Purge Clover Detector (D) LN2 Storage Dewar Caribol Paraneters Ostafiles Heb Computer (Labviw) instern times Next Mire 11 - 40 - 41 Auto (Manuel Start ctil time 06.09.21 00:55 Filingperiod (sec) 43200 Satato Start Next Fill time EX1307.274 PM 91772225 Detector 3 621196 -96.232 XIII • 🗶 📆 X Inlet valve 1 X 1246 ndve Parge valve Dell valve Del2 valve Del3 valve Del5 ndve Del5 ndve Del5 valve Del17 ndve Del8 ndve

LN2-system

ELIADE γ spectrometer

To take home

Collaborators

Monitoring, Alarming and Control for ELIADE (MACE)

Monitoring, Alarming and Control for ELIADE (MACE)

Functionalities

- HV, I_{leak} from the CAEN SY4527 High-Voltage Source;
- Temperature of the detectors is monitored via PT100 sensors
- CompactRIO (cRIO) controller activates fillings, dispatches data
- Python (PyEpics library) updates InfluxDB data base with T, HV, Ileak
- **GRAFANA** monitoring interface (web, Android, iOS) provides on-line data base visualisation
- Passive alarm: messages via emails and TELEGRAM
- Active alarm: sim-calls, forced filling, HV shut down
- browser GUI for alarms configurations/settings

Annealing station

RF experiments

Day1 Experiment

ELIADE γ spectromet

To take home

Collaborators

To take home

Discovery frontiers for NRF at ELI-NP

Availability frontier (access to rare isotopes)

Sensitivity frontier (weak channels)

Precision frontier (high statistics) ELIADE (γ-ray spectrometer) (from December 2021

Thank you for you attention

.....

S'SEDIKENNI WRCTHTET

The ELIADE collaboration

ELI-NP:

- Calin Alexandru Ur
- Gabriel Suliman
- Dmitry Testov
- Anukul Dhal
- Pär-Anders Söderström
- Violeta lancu
- Gabriel Turturică
- Cristian Petcu
- Sohichiroh Aogaki
- Emil Udup
- Frangil Ramirez
- Fan Zhu
- George Nitescu
- Andrei Vasile
- Sara Ban
- Maria Brezeanu
- …and all the technical team!

Competitiveness Operational Programme

- Jacob Beller, IKP, TU Darmstadt
- Vera Derya, IKP, University of Cologne
- Ivan Kojouharov, GSI Darmstadt
- Bastian Löher, IKP, TU Darmstadt
- Constantin Mihai, IFIN-HH Bucharest
- George Pascovici, IFIN-HH Bucharest
- Norbert Pietralla, IKP, TU Darmstadt
- Vic Pucknell, STFC, Daresbury
- Panu Rahkila, University of Jyväskylä
- Christopher Romig, IKP, TU Darmstadt
- Deniz Savran, EMMI, GSI Darmstadt
- Andreas Zilges, IKP, University of Cologne
- Volker Werner, IKP, TU Darmstadt
- Julius Wilhelmy, IKP, University of Cologne
- ..., JINR Dubna ???

Matrix elements for $0\nu\beta\beta$ -decay

• Decay rate $(\lambda_{0\nu\beta\beta})$ depends on neutrino mass (m_{ν}) and nuclear matrix element $(M^{(0\nu)})$

$$\lambda_{0\nu\beta\beta} = G_{0\nu} \left| M^{(0\nu)} \right|^2 \left(\frac{\langle m_{\nu} \rangle}{m_{\rm e}} \right)^2$$

- Matrix element needs to be calculated from nuclear structure physics and depends strongly on pn coupling
- Scissors mode particulary sensitive to pn coupling
- Example: ¹⁵⁰Sm with large $0\nu\beta\beta$ branching both to 0^+_1 and 0^+_2
- Ideal case to determine parities of J = 1 states and measure scissors branching to 0^+_2 using NRF

