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Scan of the giant resonance in 2%Pb

@ Excitation cross section measured
with polarized protons at RCNP —
Good case for commissioning

@ No information on the GDR decay
to ground or high lying states
through gamma or neutron
emission — Good case for day-1

@ Clean measurement of the absolute
value of GDR ground state y-decay

@ Measure the energy dependence of
the GDR B(E1)

e Simultaneous o(v, ) and o (v, n)
to exctract details of the wave
function

@ Finer structure from higher-order
(3p-3h,...) coupling?
e What is the nature of the PDR?

Total Spin Transfer ~ dc / da dE (mb/ st MeV)

A

3

(b)

10

15 20
Excitation Energy (MeV)

. Tamii, et al.: Phys. Rev. C 107,

062502 (2011)

1

S.

20%ppy 207pp

3/2
5/2

12




180m'|'a

Astrophysics with ELIGANT-TN
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e 9Ta not stable (n,y) equivalent
not possible
138La 100 g T T T T T T
@ Very rare with only 0.09% e VN & i
SENE sy ek Sp 1) Fipo
abundance S 'Hif e L™
. L . sl
@ Yield predictions rely entirely on o1 { te (& W E
theoretical nuclear reaction rates 001 =

B‘O l(‘]O 1&0 14‘10 }:éD léO 2(‘)0
@ Notoriously underproduced in all
p-process calculations so far M. Arnould, S. Goriely.: Phys. Rep.
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@ An array of CeBr and LaBr
for y-rays, liquid scintillators
and Li-glass detectors for
neutrons

o All the ELIGANT-GN
detectors are at ELI-NP

@ Mid of June the ELIGANT
mechanical structure will be
delivered to ELI-NP

ELIGANT - ELI Gamma Above Neutron

@ 3He tube array contained in
a paraffin moderator for
neutron counting

o All the ELIGANT-TN
detectors are at ELI-NP

@ Tested in-beam (T.
Renstrgm, D. Filipescu, .
Gheorghe, et al., IFIN
proposal)



ELIGANT-GN gamma detector performance

—— Geant4 full energy peak
Geant4 with single escape

ELI neutrons e 52Ey
10 w 137Cs
CIPYE—— \ 1 wco @ 34 large-volume LaBr3:Ce

detectors for y-rays

Efficiency (%)

o Efficiency of the
gamma-detector array
- - m,' simulated and confirmed

yrey eneray (ke with standard sources

@ Around 8% at 500 keV, 1%
at 10 MeV

o High-energy performance
and linearity evaluated up to
9 MeV with PuBeNi source

Counts/s/keV




ELIGANT neutron detectors
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o
Optical fiber input —» a8 ey
Voltage divider VD20 = NN

@ Two types of neutron detectors

e EJ-201 liquid scintillators for
16tker L300 = neutrons > 500 keV

@ GS-20 lithium glass scintillators for
. neutrons < 500 keV
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EJ-301 photoelectrons
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EJ-301 light curves
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Light e, § o Liquid scintillators known to

have non-linear response
@ Correlate the neutron energy
from ToF with light output

@ Plot the derivative of the
histogram and get the
maximum edge
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Varies between detectors,
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EJ-301 pulse-shape discrimination
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@ Pulse shape discriminate
between the two

o Figure of Merit at
low-energies sensitive to
detector quality
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ELIGANT-GN liquid scintillator performance
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@ 36 liquid scintillators for
high-energy neutrons

@ High-energy neutrons from
252Cf spontaneous fission
measured in the EJ-301
liquid scintillators

@ Clean neutron identification
well separated from gammas
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o Efficiency consistent with
simulations
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Time resolution of the neutron detectors
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@ Same method as for the
~-ray detectors implemented
for the neutron detectors

@ Mean time resolution of
600 ps for °°Co, with a
standard deviation of 100 ps
between the liquid detectors

@ Mean time resolution of 5 ns
or 99Co, with a standard
deviation of 500 ps between
the lithium glass detectors
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ELIGANT-GN lithium-glass performance
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ELIGANT-GN 252Cf array performance

@ Neutron detectors
characterised for cross-talk
using PuBe and 252Cf
sources
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@ Multiplicity based fission
trigger, neutron

AR (cm) ) I R
2 : - ‘ identification, detector
I:! L . ELIGANT-GN this work, E_ ~2 MeV| ] . . .
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r mm - .
5 FREYE By 20 all working together
15 ® .
Lo % o @ Neutron angular correlations
o 1
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GEANT4 simulations of ELIGANT-TN
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@ Recent GEANT4 simulations confirm the flat efficiency
picture up to 3 MeV

e Neutron efficiency for realistic 2>Cf and PuBe sources well
reproduced

@ In principle ready to recieve y-ray beam




ELIGANT at IFIN

Preparatory Gamma Above Neutron Threshold experiment [l d]
Nuclear Physics

,Test and calibration of the ELIGANT-TN flat efficiency neutron detection system”, IFIN-HH
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Current
3He counters 1. Beam line

Proton beam 2. Target
— 3. Collimator

_—_—
S — 4. Faraday cup
Target placed in the

center of the detection
system: "a'Cu, "atA|

/

ELIGANT-TN Faraday cup

28 °He counters
mounted on 3 rings:
Inner ring: 4 counters
Middle ring: 8 counters
Outer ring: 16 counters Cd and polyethylene
Polyethylene moderator shielding

M. Krzysiek: Nuclear Photonics, June 24 - 28, 2018, Brasov, Romania




ELIGANT at IFIN
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Neutron interest for high-power lasers
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Measurements in a difficult environment
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Very intense electromagnetic
pulse (EMP), up to hundreds of
kV/m for ~ 100 J

At ELI-NP, 10 PW beamline
will generate ~ 250 J
Pre-amplifiers, readout
electronics, comuters, all at risk

Photomultiplier tubes robust,
but still affected

Very intense v-ray/particle flux
- all events happen within few
ps

Passive detectors, isomers,
“artificial” delay (neutron
moderation)
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Neutron detection strategy for high-power lasers

(a) 3D view
. - @ Thermalizing neutron counter
-~ pounter developed for high-power laser
e Proton experiments

spectrometer
laser P

beam

@ Gas counters, preamplifiers not
possible. High-risk equipment and

Target-heating

i slow response.
(bl Topview @ Neutron-capture concept with
P A/ Proton- . . .
Y | B borated plastic scintillator rods
y. laser
it ‘ e @ Few ns pulse shapes, high thermal
Segmented neutron captire cross-section
___neutron
/ ConEr @ Dual PMT concept with one PMT
S, L
spectrometor on each end, coincidence removes
large amount of laser-induced noise

125 um laser focus, 17MeV max proton energy

on each PMT

@ Neutron moderation in
polyethylene ensure that neutrons
10 arrive with a time distribution over

oo S ms instead of ps
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