Time Projection Chambers

D. Kahl, Y. Xu, H. Yamaguchi, D. Balabanski, U. Battino, O. Beliuskina, S. M. Cha, K. Y. Chae, A.A. Chen, M. Cuciuc, M. Cwiok, W. Dominik, M. Gai, L.-B. Galadriel, G.L. Guardo, T. Hashimoto, S. Hayakawa, G. Kaminski, A. Kankainen, C. Kim, M. Kim, S. Kim, M. La Cognata, L. Lamia, D. Lattuada, C. Matei, S. Palmerini, R.G. Pizzone, S. Romano, P.-A. Söderström, D.K. Schweitzer, M. Sferrazza, R. Smith, S.R. Stern, D. Testov, A. Tumino, and V. Vasilca

October 25, 2021; david.kahl@eli-np.ro

Extreme Light Infrastructure – Nuclear Physics, IFIN-HH

Presented at New Trends in Nuclear Physics Detectors, HIL, Warsaw

Outline

- 1) Astrophysical abundances
- 2) X-ray Bursts
- 3) CRIB laboratory, Tokyo
- 4) My PhD work with an active target
- 5) What is a TPC, anyway?
- 6) s-process and importance of ${}^{22}Ne(\alpha, n)$
- 7) Introduction to the ELI-NP miniTPC device
- 8) New approved experiment at IFIN-HH 9 MV tandem

what elements are mostly in the universe...?

Astronomer's Periodic Table

Figure: Baryonic mass of the universe >99% hydrogen and helium. Inspired by Ben McCall, Jason Tumlins, Jim Truran, and others from University of Chicago.

how does hydrogen burn...

Carbon-Nitrogen-Oxygen Catalytic Cycles

Figure: (a) the reaction pathways which dominate according to stellar conditions of (b): HCNO cycles operate in (A). ${}^{14}O(\alpha, p){}^{17}F$ and ${}^{15}O(\alpha, \gamma){}^{19}Ne$ operate in (B). ${}^{18}Ne(\alpha, p){}^{21}Na$ breakout operates in (C). (b) modified from Wiescher, M., Görres, J. & Schatz, H., TOPICAL REVIEW: Break-out reactions from the CNO cycles, Journal of Physics G Nuclear Physics **25** (1999) 133–161

accretion is mass transfer...

Thermonuclear runaway from accretion

- ▶ *Novae* occur in accreting *white dwarf* binaries
- ▶ X-ray bursts occur in accreting *neutron star* binaries
- ▶ The companion star should be near a solar mass, M_☉
 ▶ Required for Roche lobe overflow
- ▶ High local gravity $g \rightarrow$ high pressure P
- \blacktriangleright High impacting velocity v
- \blacktriangleright High temperature T
- ▶ Fresh supply of H and He (nuclear fuel)
- e^- degenerate matter leads to explosive burning
 - \blacktriangleright *P* only weakly depends on *T*
- ▶ Thermonuclear runaway!
- Binary star system
 - \blacktriangleright 50% of all star systems
 - Compact-object binaries are fewer

XRB spectra look like...

Observations of X-ray Bursts (~ 100 known systems)

Models should reproduce the observable structure of bursts

accretion is happy...

Accretion on a Neutron Star... is exciting!

Helium is pretty explosive...

Example of neutron-deficient explosive He burning

Figure: One of the α p-process pathways. We investigated ¹⁸Ne(α , p), ²²Mg(α , p) and ³⁰S(α , p) at CRIB with the active target.

and there is an experiment for this, too...

For details, please see our magazine article

Nuclear Physics News

uclear Physics News

DAID KAHL University of Edinburgh

CRIB: The Low Energy In-Flight RI Beam Separator

ISSN: 1061-9127 (Print) 1931-7336 (Online) Journal homepage: https://www.tandfonline.com/loi/gnpn20

Hidetoshi Yamaguchi, Daid Kahl & Shigeru Kubono

To cite this article: Hidetoshi Yamaguchi, Dald Kahl & Shigeru Kubono (2020) CRIB: The Low Energy In-Flight RI Beam Separator, Nuclear Physics News, 30:2, 21-27, DOI: 10.1080/10619127.2020.1717263

SHIGERU KUBONO RIKEN

- ▶ Aimed at a general audience in nuclear physics
 - Overview of in-flight radioactive beam production
 - ► Highlights of our more recent works
- Check out www.nupecc.org for similar articles!

my PhD work with TPC...

First measurement of ${}^{30}S + \alpha$ resonant elastic scattering for the ${}^{30}S(\alpha, p)$ reaction rate

D. Kahl,^{1,2,*} H. Yamaguchi (山口英芳),¹ S. Kubono (久保野茂),^{1,3,4} A. A. Chen,⁵ A. Parikh⁶ D. N. Binh,^{1,4} J. Chen (常復),^{5,4} S. Cherubini,^{1,5} N. N. Duy,^{9,10,4} T. Hashimoto (儒本商志),^{1,4} S. Hayakawa (早川勞也),¹ N. Iwasa (岩佐直仁),¹¹ H. S. Jung (沒 直会),¹² S. Kato (加藤静音),¹⁴ Y. K. Kwon (건 영 관),^{1,2} S. Nishimura (御村復二),¹ S. Ota (大田晋釉),¹ K. Setoodehnia,¹⁴ T. Teranishi (寺西斎),¹⁴ H. Tokicda (御検裁定),¹⁷ Yamada (山田拓),^{11,4} C. C. Yun (会 老 3),¹² and L. Y. Zhang (梁 立 句),^{11,4}

 $^{30}\mathrm{S}$ radioactive beam injected into an active target

here are some details...

What is a Time Projection Chamber (TPC)?

- 1) It's just an ionization chamber, old technology in principle
- 2) Gas-filled detector
- 3) Gas-filled target good for astrophysics
- 4) We can determine $X, Y, Z, \Delta E$ (and E, depending)
- 5) Essentially 4π coverage for charged particles
- 6) Difficult to design correctly and operate
- 6) Use monoenergetic source to test, e.g. ²⁴¹Am

(b) Photograph

so we can look at the components...

GEM-MSTPC Multiple Sampling and Tracking Proportional Chamber with Gas Electron Multiplier

Basics of TPC operation with GEM

- ► Electronic Time Projection Chamber (TPC)
- ▶ Drift time of electrons around μ s per cm
 - Limits event rate to around 10^6 / second
- ▶ Gas Electron Multiplier (GEM) foils
- ▶ 90% He + CO₂ at 25% atm
- ▶ Low pressure gas has a high dielectric constant sparks!
- ▶ GEM gas gain goes linearly then exponentially with bias

Top	-2828	Bottom	-1000	
Low-	gain	High-gain		
Cover	-950			
1U	-913			
1D	-823	Cover	-992	
2U	-803	1U	-899	
2D	-587	1D	-694	
3U	-513	2U	-655	
3D	-135	2D	-135	

(b) Biases for ${}^{30}S+\alpha$

I promised more cats...?

The tail of two cats

▶ There are many ways around injection / event limit

▶ Bridges...

▶ Two field cages!

- $\blacktriangleright \text{ CNS Active Target} = \text{CAT}$
- ▶ Shinsuke OTA was heading up this research (UTokyo)
 - (α, α') and (d, 2p) for GT

(a) Twin field cages!

(b) Galadriel bites Sarah!

how about the waveforms ...?

Flash ADC type sampling readout

- Record full waveform of analog signal
- ▶ Lots of data, sampling at 10s of MHz typically
- ▶ Baseline subtraction is possible
- ▶ Peak finding algorithm required: moving average technique
 - ▶ github.com/goatface/crabat/Analyzer.cxx line 1670
- ▶ Contamination by air: terrible waveforms
- ▶ Contamination by water vapor: sparks
- ▶ New GET electronics really simply this setup

examples of why GET system is better and compact...?

Be careful with energy loss from SRIM at low energy

time to look at some TPC tracks...?

Better to explain carefully how the algorithm works...

Scattering Location By Beam Tracking

- ▶ After data processing and gating, we have two possibilities:
 - ▶ 1) Upstream scattering
 - (This is the 83 mm of target gas before the active region)
 - ▶ We should find a good single linear fit in X and Y
 - ▶ There is no relation with the PPAC data
 - ▶ 2) Active target scattering
 - We should find two pairs of linear fits in X and Y
 - ▶ The vertex must be the same
 - ▶ The first sets of linear fits include the PPAC data
 - ▶ There should be a local increase in ΔE at the vertex
- ▶ In both cases, the slopes must go opposite of the α
- Compute and compare χ^2_{ν} to distinguish 1 & 2
 - If $(({}_{\mathbf{1}}\chi^2_{\nu} < {}_{\mathbf{2}}\chi^2_{\nu})$ and $({}_{\mathbf{2a}}\chi^2_{\nu} > 1 \text{ or } {}_{\mathbf{2b}}\chi^2_{\nu} > 1))$: upstream
 - Else as long as all $\chi^2_{\nu} < 1$: active target case)
 - ▶ This is because of additional ΔE constraint
- ▶ Let's see how well it works!

summing them all up...

Beam X residual 30 S and 29 P before gain calibration

Figure: Geometric correction is made, and then ΔX is determined by the active target position minus the PPAC extrapolation. But the position determination shows some non-linearity, since ²⁹P is non-central and active target data suggests it is closer to the center than the actual case. ³⁰S is injected over the central region.

Though the calibrated spectrum looks much nicer...

Unscattered beam tracking by charge-division for ³⁰S

³⁰S Beam X by Active Target

Figure: ³⁰S beam track in X over the low-gain active target region. Beam penetration depth (left to right) with pad number(4 mm) vs. left/right position derived by charge-division.

Comparing with a simulation yields the resolution of...

Beam X residual ³⁰S

Figure: Projection and fit of the beam residual data for X position. ΔX is determined by the active target position minus the PPAC extrapolation. TPC resolution by charge-division ranges from 3 mm to 5.5 mm depending on ΔE . PPAC resolution is 0.9 mm. Errors are 1σ .

And after X comes Y...

Unscattered beam tracking by drift-time for ^{30}S

³⁰S Beam Y by Active Target

Figure: ³⁰S beam track in Y over the low-gain active target region. Beam penetration depth (left to right) with pad number(4 mm) vs. up/down position derived by electron drift time.

Comparing with a simulation yields the resolution of...

Beam Y residual

Figure: Projection and fit of the beam residual data for Y position. ΔY is determined by the active target position minus the PPAC extrapolation. TPC resolution for drift time is 0.5 mm. PPAC resolution is 0.9 mm. Errors are 1σ .

And the results look like...

Track finding: Garbage in, garbage out

- ▶ Resolution was not good enough to find tracks
- ▶ Without beam tracking data it was a Gaussian
 - ▶ I made a very expensive RNG with an RIB
 - Sorry I couldn't find the figure, I wanted to forget that
- ▶ Kinematic solution finds the Rutherford peak: correct
- ▶ Trust the measured ΔE ; forget the TPC tracks

$^{30}\mathrm{S}(\alpha,\alpha)$ at CRIB

(a) My PhD data^{\dagger}

(b) Anuj's post-processing model

- ▶ Low-energy 30 S RIB at 10^4 pps: 4+ years to develop
- Active target system with $\text{He}+\text{CO}_2$ (90% + 10%)
- We found several **huge** resonances with $\theta_{\alpha}^2 > 40\%$
- ► Recent work^{*} has assumed $S_{\alpha} \approx 0.01$ in any case

New XRB astrophysical paper in preparation (it's a secret!)
 [†]D. Kahl, H. Yamaguchi, S. Kubono, A. A. Chen, et al. Phys. Rev. C 97 (2018) 015802.
 ^{*}A. M. Long et al. Phys. Rev. C 97 (2018) 054613.

how can the miniTPC address the $^{22}Ne(\alpha, n)$ reaction...

 $^{22}\mathrm{Ne}(\alpha,\mathrm{n})$ is responsible for much of $60\lesssim A\lesssim90$

Figure: Absolute abundances of 'weak' s-process \gg 'main' s-process. Image credit: A. Davis of University of Chicago. Modified by DK for \swarrow ?

what's going on near that question mark...?

Nucleosynthesis in $60 \leq A \leq 90$ is both *r*- & *s*-process

- ▶ The r-process is a hot topic because of neutron star mergers
- Usually, r = 1 s for several reasons:
 - 1) We can generally neglect p-process contributions
 - 2) We know the sites and stellar models, basically
- \blacktriangleright : to understand r we need to know s precisely

Element (1)	Z (2)	N _{tot} (3)	N _r (4)	$\log \epsilon_r^a$ (5)	N _s (6)	$\log \epsilon_s^a$ (7)	<i>r</i> -Fraction (8)	s-Fraction (9)
Ga	31	37.850	16.300	2.752	21.550	2.873	0.431	0.569
Ge	32	108.757	56.170	3.290	52.587	3.261	0.516	0.484
As	33	6.786	5.330	2.267	1.456	1.703	0.785	0.215
Se	34	61.443	40.260	3.145	21.183	2.866	0.655	0.345
Br	35	5.569	4.640	2.207	0.929	1.508	0.833	0.167
Kr	36	51.952	22.680	2.896	29.272	3.006	0.437	0.563
Rb	37	5.794	2.890	2.001	2.904	2.003	0.499	0.501
Sr	38	23.090	2.550	1.947	20.540	2.853	0.11	0.89
Y	39	4.654	1.310	1.657	3.344	2.064	0.281	0.719
Zr	40	10.703	2.040	1.850	8.663	2.478	0.191	0.809

TABLE 10 Solar System s- and r-Process Abundances

Figure: r- & s-Fractions are shuffled near mass numbers 60 to 90 J. Simmerer, et al., ApJ, "The Rise of the s-Process In the Galaxy", 617 (2004) 1091.

what are the known nuclear structure data...?

²²Ne(α , n) Part I: ²⁶Mg states with measured Γ_{α} or $\omega\gamma$

▶ Many states have discrepant data (not shown here)

(MeV)	E_r^{CM} (keV)	J^{π}	$\begin{array}{c} \omega \gamma_{(\alpha,\gamma)} \\ (eV) \end{array}$	$\omega \gamma_{(\alpha,n)}$ (eV)	Γ_{α} (eV)	Γ_{γ} (eV)	(eV)	Integrate resonance?
10.6963(4)	81.6(4)	4+			$3.5(18) \times 10^{-46}$	3.0(15)	0	No
11.084(1)	469(1)	2+			$5.7(1.5) \times 10^{-11}$	3.0(15)	õ	No
11.321(1)	706(1) ^a	$0^{+}/1^{-}$	$3.7(4) \times 10^{-5}$	$4.2(11) \times 10^{-5}$	()	()	-	No
11.44120(4)	826.46(5)	3-		$3.9(10) \times 10^{-5}$	$5.50(14) \times 10^{-6}$	3.0(15)	$1.47(8) \times 10^{3}$	Yes
11.46574(6)	851.00(6)	3-		$5.5(17) \times 10^{-5}$	$7.9(2.4) \times 10^{-6}$	3.0(15)	$6.55(9) \times 10^3$	Yes
11.5080(9)	893.3(9)	1-		$3.5(6) \times 10^{-4}$	$1.2(4) \times 10^{-4}$	3.0(15)	$1.27(25) \times 10^3$	Yes
11.5260(15)	911.3(15)	1-		$1.3(4) \times 10^{-3}$	$4.3(11) \times 10^{-4}$	3.0(15)	$1.80(25) \times 10^3$	Yes
11.630(1)	1015.3(14)	1-		$7.1(15) \times 10^{-3}$	$2.4(5) \times 10^{-3}$	3.0(15)	$13.5(17) \times 10^{3}$	Yes
11.749(5)	1133(6)	1-		$5.9(8) \times 10^{-2}$	$2.0(3) \times 10^{-2}$	3.0(15)	$64(9) \times 10^{3}$	Yes
11.787(3)	1172(3)	1-		$2.5(9) \times 10^{-2}$	$8(3) \times 10^{-3}$	3.0(15)	$24.5(24) \times 10^3$	Yes
11.828(1)	1213(1)	2^{+}		$2.5(3) \times 10^{-4}$	$1.8(1) \times 10^{-1}$	3.0(15)	$1.10(25) \times 10^{3}$	Yes
11.863(3)	1248(3)	1-			$1.5(10) \times 10^{-2}$	3.0(15)	$2.45(34) \times 10^4$	Yes
11.880(3)	1265(3)	1-		$1.9(19) \times 10^{-1}$	$6.30(63) \times 10^{-2}$	3.0(15)	$3.0(15) \times 10^{3}$	No
11.895(4)	1280(4)	1-	$2.0(2) \times 10^{-3}$	$4.1(4) \times 10^{-1}$				No
11.911(1)	1297(3)	1-	$3.4(4) \times 10^{-3}$	1.4(1)	1.9(9.8)	3.0(15)	$5(2) \times 10^{3}$	Yes
11.953(3)	1338(3)	2^{+}	$3.4(4) \times 10^{-3}$	1.60(13)	$3.2(1.7) \times 10^{-1}$	3.0(15)	$2(1) \times 10^{3}$	Yes
12.050(1)	1436(3)	2^{+}	$6.0(7) \times 10^{-3}$	4.7(3)	$1.1(3) \times 10^{-1}$	3.0(15)	$4(1) \times 10^{3}$	Yes
12.141(1)	1526(3)	1-	$1.0(2) \times 10^{-3}$	2.4(2)	1.7(5)	3.0(15)	$1.5(2) \times 10^4$	Yes
12.184(5)	1569(7)	0^{+}	$1.1(2) \times 10^{-3}$	$1.21(29) \times 10^{1}$	0.90(11)	3.0(15)	$3.3(5) \times 10^4$	Yes
12.270(5)	1658(7)	0^{+}	$8.9(1) \times 10^{-3}$	$2.1(2) \times 10^{1}$	$2.2(4) \times 10^{2}$	3.0(15)	$7.3(9) \times 10^4$	Yes
12.344(2)	1728(4)	0^{+}	$5.4(7)\times10^{-2}$	$1.57(10)\times 10^2$	$6.30(12) \times 10^2$	3.0(15)	$3.5(5) \times 10^4$	Yes

Table II from: P. Adsley, et al., Phys. Rev. C, 103 (2021) 015805

what are the less known nuclear structure data...?

 22 Ne(α , n) Part II: 26 Mg states w/ unmeasured Γ_{α} or $\omega\gamma$

- ▶ Known natural parity states that may contribute
- ▶ High resolution and sensitivity to Γ_{α} is needed

Ex	E_r^{CM}		$\Gamma_{\alpha,\text{UL}}$	Γ	Γ_n	Integrate
(MeV)	(keV)	J^{π}	(eV)	(eV)	(eV)	resonance?
10.6507(4)	36.0(4)	7-	1.60×10^{-76}	3.0(15)	0	No
10.8057(7)	191.0(7)	1-	3.2×10^{-23}	0.72(18)	0	No
10.818(1)	203(1)	0^{+}	1.29×10^{-20}	3.0(15)	0	No
10.826(1)	211(1)	(2^+)	6.65×10^{-21}	3.0(15)	0	No
10.8976(47)	278(1)	(4+)	1.41×10^{-18}	3.0(15)	0	No
10.9491(1)	334.4(8)	1-	2.90×10^{-15}	1.9(3)	0	No
11.11223(4)	497.49(5)	2^{+}	4.3×10^{-10}	$1.37(6) \times 10^{-2}$	$2.095(5) \times 10^3$	Yes
11.16310(4)	548.36(5)	2^{+}	5.2×10^{-9}	2.8(2)	$5.31(5) \times 10^{3}$	Yes
11.16926(4)	554.52(5)	3-	4.4×10^{-10}	3.3(2)	$1.94(2) \times 10^{3}$	Yes
11.17107(4)	556.33(5)	2^{+}	1.3×10^{-11}	3(2)	0.8(7)	No
11.27380(4)	659.06(5)	2^{+}	1.00×10^{-6}	2.2(2)	$4.1(1) \times 10^2$	Yes
11.27963(4)	664.89(5)	3-	9.20×10^{-8}	$3(1) \times 10^{-1}$	$1.81(2) \times 10^{3}$	Yes
11.30100(9)	686.26(9)	(2^+)	1.53×10^{-5}	<3	$<2.0 \times 10^{1}$	No
11.32768(4)	712.94(5)	(1^{-})	1.80×10^{-6}	2.2(3)	$1.71(6) \times 10^{2}$	Yes
11.33696(4)	722.22(5)	(1^{-})	1.74×10^{-4}	<3	$<2.0 \times 10^{1}$	No
11.34389(9)	729.15(9)	(2+)	1.10×10^{-6}	1.0(2)	$< 1.95 \times 10^{3}$	Yes
11.50022(4)	885.48(5)	1-	1.95×10^{-1}	3.0(15)	$3.0(15) \times 10^{3}$	Yes

Table III from: P. Adsley, et al., Phys. Rev. C, 103 (2021) 015805

what device can we use to help resolve this problem...?

miniTPC at ELI-NP: In hand!

- ▶ Electronic Time Projection Chamber (TPC)
- ▶ Gas Electron Multiplier (GEM) foils
- Successfully commissioned with α beams (2018)
- ▶ Basically an ionization chamber: $X, Y, Z, (\Delta)E$
- Essentially 4π coverage for charged particles
- Active target volume: $105 \times 105 \times 200 \text{ mm}^3$
- ▶ Neon is a suitable fill gas for this active target

(a) Schematic

(b) Photograph

how can the miniTPC address the ${}^{22}Ne(\alpha, n)$ reaction...?

 22 Ne(α , n) reaction rate by 22 Ne(6 Li, d), Part I

- ► The (⁶Li, d) reaction is a known α -transfer to obtain Γ_{α}
 - $\gamma = \Gamma_{\alpha} \iff \Gamma_{\alpha} \ll \Gamma_{n}; \Gamma_{\alpha} \text{ controls the reaction rate}$
- ▶ Two recent studies in inverse kinematics of ⁶Li(²²Ne, d)
 - ▶ Published in Phys. Lett. B (2020), with conflicting results
 - Lithium content of targets $< 10 \ \mu g/cm^2$
 - ▶ Jayatissa *et al.* obtained 95 keV resolution
 - ▶ Ota *et al.* obtained 230 keV resolution
- Propose to measure in normal kinematics with miniTPC
 - ► Target thickness over mg/cm², 4π coverage
 - ▶ Several mm resolution, with $\Delta E \sim 10 \text{ keV/mm}$

some decisions need to be made after a test experiment...

 22 Ne(α , n) reaction rate by 22 Ne(6 Li, d), Part II

▶ ⁶Li at low energy: smaller σ , needs 10⁷ pps beam

- ▶ Unknown if the miniTPC can handle such intensity
- Less target gas required to stop heavy recoils
- Extracted data is less model dependent
- ▶ ⁶Li at high energy: larger σ , needs 10⁶ pps beam
 - More target gas required to stop heavy recoils
 - Extracted data is model dependent

▶ Priority requests (separated from physics machine time):

- ▶ 2 days: ⁶Li intensity check and energy loss calibration
- ▶ 0.5 days: ²⁴Mg energy loss calibration: $E_{\text{beam}} < 15 \text{ MeV}$

⁶ Li Beam Energy	Cross Section
(MeV)	(mb)
6.0	8.1103×10^{-4}
7.0	1.7163×10^{-3}
20.0	1.1970×10^{-2}
32.0	2.2368×10^{-2}
82.7	3.2228×10^{-2}

(a) $\sigma(E)$ from FRESCO

(b) Differential Cross Sections how does this all finally work...?

22 Ne(α , n) reaction rate by 22 Ne(6 Li, d), Part III

- ▶ Thick target in normal kinematics: deutron escapes TPC
- ▶ Heavy recoil has similar energy deposit to the beam
 - Single dynamic range
 - ▶ Full angular coverage
 - ▶ Reaction location precisely measured $\rightarrow E_{c.m.}$
 - ▶ Q-value from Δ E-E clearly identifies contaminat processes
 - ▶ (⁶Li, ⁶Li) simultaneously for optical potential
- ▶ 4 days of machine time needed for statistics of Jayatissa
 - ▶ We request 8 days for newly resolved, weaker resonances

▶ This is a new and novel approach to the ${}^{22}Ne(\alpha, n)$ reaction

that's about it...

