New Trends in Nuclear Physics Detectors 2021

Nuclear Astrophysics Experiments using Active Target Detectors at CENS

Sunghoon(Tony) Ahn
CENS, IBS
October 25th, 2021
On be half of TexAT & AToM-X
collaborations

New Trends in Nuclear Physics Detectors 2021

Nuclear Astrophysics Experiments using Active Target Detectors at CENS

- 1. Center for Exotic Nuclear Studies (CENS)
 - 2. Nuclosynthesis and Nuclear Physics Inputs
- 3. ¹⁴O(a,p)¹⁷F cross sections using TexAT
 - 4. AToM-X Development at CENS
- 5. Future Experimental Studies
 - 6. Summary

CENS Organization

CENS Objectives

CENS Nationalities and Playgrounds

Nationalities

- · Canada
- ·Hungary
- · South Korea
- ·Turkey
- ·USA
- ·China
- ·Spain

RIB Facilities

- ·RIBF (Japan)
- ·CRIB/CNS (Japan)
- · ATOMKI (Hungary)
- ·HI-ISOLDE (Switzerland)
- · GANIL (France)
- ·TRIUMF (Canada)
- · TAMU (USA)
- · FRIB (USA)
- · ANL (USA)
- · RAON (South Korea)

Abundance Pattern of Elements

Abundances in metal poor r-stars
J.J. Cowan and C. Sneden, *Nature* 440, 1151 (2006)

Abundance ratio of La/Eu and Ba/La

Nucleosynthesis Processes

Schematic overview of the nuclear processes on nuclear chart H. Schatz, 2016

Nuclear Properties for Nucleosynthesis

- Nucleosynthesis process can explain the observation.
 - → Nuclear Physics plays an important role!
 - \rightarrow mass, Q-value, $T_{1/2}$, P_n , level densities and reaction rates

Schematic overview of the nuclear processes on nuclear chart H. Schatz, 2016

Nuclear Reaction Rates during the ap-process

- Light curves of x-ray burst can be explained by αp -process and rp-process.
- (α, p) reaction rates play an important role in determining the light curve.

Calculated light curves of X-ray burst

The most important (a,p) cross sections in X-ray burst

- The recent sensitivity study shows there are important astrophysical (a,p) reaction rates affecting a large variation of energy generation and final ash in X-ray burst model.
- Possible Reactions with CRIB beams: $^{30}S(a,p)^{33}Cl$, $^{26}Si(a,p)^{29}P$, $^{22}Mg(a,p)^{25}Al$,

¹⁸Ne(a,p)²¹Na, ¹⁴O(a,p)¹⁷F and ¹⁷F(a,p)²⁰Ne

Rank	Reaction	Туре	Sensitivity
1	¹⁵ O(α,γ) ¹⁹ Ne	D	16
2	⁵⁶ Ni(α,p) ⁵⁹ Cu	U	6.4
3	⁵⁹ Cu(<u>p,y</u>) ⁶⁰ Zn	D	5.1
4	⁶¹ Ga(<u>p,γ</u>) ⁶² Ge	D	3.7
5	²² Mg(α,p) ²⁵ Al	D	2.3
6	¹⁴ O(α,p) ¹⁷ F	D	5.8
7	²³ Al(p,y) ²⁴ Si	D	4.6
8	¹⁸ Ne(α,p) ²¹ Na	U	1.8
9	⁶³ Ga(<u>р,ү</u>) ⁶⁴ Ge	D	1.4
10	¹⁹ F(p,α) ¹⁶ O	U	1.3

Reactions that Impact the Burst Light Curve in the Multi-zone X-ray Burst Mode

The X-ray burst light curve in the multi-zone varied by ¹⁴O(α,p) reaction rate

Alternate break-out path from HCNO cycle

- Alternate path from the hot CNO cycle to the rapid proton burning (rp-process)
- Wallace and Woosley have shown that at sufficiently high temperatures and densities a capture on ^{14}O and ^{15}O competes favorably with β decay

Experimental studies of $^{14}O(a,p)^{17}F$ cross sections

- AZURE and TALYS-1.95 calculated cross sections: two orders of magnitude different.
- Previous cross section measurements studied at high energy range (2 MeV ≤ Ecm ≤ 2.8 MeV) show large disagreements with the measurement containing data at low energy range (1 MeV ≤ Ecm ≤ 1.5 MeV) encouraging another study to confirm the reliability of measurements.

Previous measured data and calculated total cross sections of $14O(\alpha,p)$ reaction

RIB Beam Production – CRIB/CNS at RIKEN

Radioactive beam by CNS RI beam separator (CRIB) at RIKEN Nishina Center

RIB Beam Production – CRIB/CNS at RIKEN

Radioactive beam by CNS RI beam separator (CRIB) at RIKEN Nishina Center

¹⁴O beam production at CRIB

Primary beam	Energy	Intensity (pps)	Production target
¹⁴ N	8.4 MeV/u	1.00E+06	² H, 90K, 230 Torr 1.29 mg/cm ²
Secondary beam	Enorgy	Interest (max)	
Secondary Beam	Energy	Intensity (pps)	Scattering target

A schematic diagram of the ¹⁴O beam production from the CRIB/CNS

Texas Active Target Time Projection Chamber

- Active area: 245 (X) x 150 (Y) x 224 (Z) mm³
- Scattering chamber: 500 (X) x 340 (Y) x 500 (Z) mm³ (made of 3cm-thick aluminum) portable!
- Ionization Counter after the window for beam intensity and purity
- Silicon and CsI detectors wall for total energy of particles
- Different front windows for physics needs (Havar, Mylar, Kapton and Ti)
- Target gas: CH₄, C₄H₁₀, CD₄, He/CO₂(98/2%) and CO₂

A picture for TexAT and GET setup

Previous TexAT Experiment with RI Beam

• Reaction: ⁸B + p with 7.6 MeV/u ⁸B beam and 10³ pps from MARS, Texas A&M University

• Target: Methane gas (CH₄), Pressure = 435 Torr

• The new 5/2+ state found at 4.3 MeV in 9C

The energy deposition of ⁸B in each pads.

A sample particle track from ⁸B+p experiment

Excitation function for 8B + p

- (a) 157 172 deg.
- (b) 100 145 deg. in CoM.

Direct Measurement of $^{14}O(a,p)^{17}F$ cross sections with TexAT at CRIB

- Reaction: ¹⁴O + a with 3.36 MeV/u ¹⁴O beam and 3x10⁵ pps from CRIB
- Target: He/CO₂ (90/10 %) mixture gas, Pressure = 460 Torr (Beam will stop at Z=196 mm)
- Si + CsI detectors will be installed on the side and bottom of the field cage.
- Detector Efficiency from GEANT4 simulation: 50% (Si. Det Hit trigger, uniform cross section) assumed)

$^{14}O(\alpha.p)^{17}F$	reaction	in	inverse	kinematics

Ep (MeV)	E _{remain} (MeV)
2.5	2.2
2	1.6
1.5	1
1	0.14

Proton Energy at Si detector for event at Z=168mm ($E_{cm}=1$ MeV)

TexAT detector setup

TexAT Upgrade for $^{14}O(a,p)^{17}F$ experiment

• FC Upgrade and Test

- using a-emitting ²⁴¹Am fission source
- a particle track could be obtained by the Micromegas
- checked edge effect
- compared with original TexAT field cage

Requested Experiment Beamtime

- Beam Time Request: 14 days total with beam intensity of 3 x 10⁵ pps
 - ✓ TexAT optimization time with the stable ¹⁴N primary beam: 0.5 day
 - ✓ beam tuning: 0.5 day
 - ✓ background runs with the CO₂ gas: 2 days
- ✓ production runs with ¹⁴O beam and the He/CO₂ mixture target: 11 days
- The data will provide 5 to 13% statistical uncertainty
- \rightarrow The uncertainty of ¹⁴O(a,p)¹⁷F reaction rate: the two orders of magnitude down.

E _x (MeV)	Јπа	Γα(keV)ª	Γ _p (keV) ^a	σ (mb) ^b	Expected counts per binc
6.150	1-	2.2×10 ⁻³	20	0.2397	60
6.286	3-	3.4×10 ⁻⁴	25	0.07174	18
7.05	4+	4.8×10 ⁻²	53	3.427	920
7.35	1-	1.7	12	114.6	31,700

Expected total count rate of astrophysically important resonances.

[Readiness]

- TexAT transportation from US to Japan: TexAT was shipped to Canada in 2019. No issue.
- A test with the He/CO₂ mixture gas: 96/4% ratio was tested. No issue expected with 90/10% ratio.
- •Maximum beam rate of the TexAT: The rate $3x10^5$ pps in the CD₄ gas was successfully tested when we stopped the beam in the active area: $5x10^5$ pps tested last August.
- Installation of additional Si detectors on the side and bottom of the active area: Si det. will arrive next week! New frames designs are almost completed.
- → We are waiting for the beam time after March, 2022!

ATOM-X: CENS Active Target TPC

AToM-X: <u>Active target TPC for Multiple nuclear eXperiment</u>

TexAT: Rectangular shape

AToM-X: Octagonal shape

→ No Si dead layer effect!

AToM-X: Silicon and CsI detectors

Newly designed silicon detector: X6

- 8 resistive strips + 4 non-resistive strips
- → Position resolution improved!
- Now waiting for the delivery

AToM-X: DAQ & Analysis software

- Large number of channels (~5000ch)
 - → ASIC Electronics: low cost, small space, and simple setup
 - → GET (Generic Electronics for TPC): 64ch/chip, 256ch/AsAd board
- DAQ libraries were installed!
- GEANT4-based simulation software
- Track reconstruction/analysis software using machine learning

AToM-X: Plan for the future experiment

Direct measurements

of the astrophysically-important (a_p) reactions

actions that Impact the Burst Light Curve in the Single-zone X-Ray Burs

Model					
Rank	Reaction	Type ^a	Sensitivity ^b	Categor	
1	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	12.5	1	
2	59 Cu(p, γ) 60 Zn	D	12.1	1	
3	$^{15}O(\alpha, \gamma)^{19}Ne$	D	7.9	1	
4	$^{30}S(\alpha, p)^{33}Cl$	U	7.8	1	
5	$^{26}\mathrm{Si}(\alpha,\mathrm{p})^{29}\mathrm{P}$	U	5.3	1	
6	⁶¹ Ga(p, γ) ⁶² Ge	D	5.0	1	
7	23 Al(p, γ) 24 Si	U	4.8	1	
8	$^{27}P(p, \gamma)^{28}S$	D	4.4	1	
9	63 Ga(p, γ) 64 Ge	D	3.8	1	
10	60 Zn(α , p) 63 Ga	U	3.6	1	
11	22 Mg(α , p) 25 Al	D	3.5	1	
12	⁵⁶ Ni(p, γ) ⁵⁷ Cu	D	3.4	1	
13	$^{29}S(\alpha, p)^{32}C1$	U	2.8	1	
14	$^{28}S(\alpha, p)^{31}C1$	U	2.7	1	
15	$^{31}Cl(p, \gamma)^{32}Ar$	U	2.7	1	
16	³⁵ K(p, γ) ³⁶ Ca	\mathbf{U}	2.5	2	
17	18 Ne(α , p) 21 Na	D	2.3	2	
18	$^{25}\text{Si}(\alpha, p)^{28}\text{P}$	U	1.9	2	
19	57 Cu(p, γ) 58 Zn	D	1.7	2	
20	34 Ar(α , p) 37 K	U	1.6	3	
21	24 Si(α , p) 27 P	U	1.4	3	
22	22 Mg(p, γ) 23 Al	D	1.1	3	
23	65 As(p, γ) 66 Se	U	1.0	3	
24	$^{14}O(\alpha, p)^{17}F$	U	1.0	3	
25	40 Sc(p, γ) 41 Ti	D	0.9	3	
26	$^{34}Ar(p, \gamma)^{35}K$	D	0.8	3	
27	47 Mn(p, γ) 48 Fe	D	0.8	3	
28	$^{39}\text{Ca}(p, \gamma)^{40}\text{Sc}$	D	0.8	3	
	(F, //		310		

R.H. Cyburt *et al.*, PRC (2016)

 $^{17}F(\alpha, p)^{20}Ne$

¹⁸Ne(α, p)²¹Na

 22 Mg(α ,p) 25 Al $^{30}S(\alpha, p)^{33}CI$

and so on...

Optical Model Potentials for Exotic Nuclei

- Can we trust the Global Optical Model Potentials?
 - Phenomenological GOMP
 - Microscopic GOMP

✓ Broad range of lab energy usingAToM-X.

60 75 Lab Angle (deg)

✓ Using 16,18 O, 20,22 Ne beams, (p,p), (d,d),(a,a) elastic

Optical model potential from chiral effective field theory 40 60 80 100 120 140 160 n-40Ca E=11.9 MeV n-48Ca E=11.9 MeV n-40Ca E=16.9 MeV n-48Ca E=16.9 MeV 100 EXP CH89+WS 100 120 140 160 ··· DOM+WS - DOM T.R. Whitehead et al. PRC (2020) dσ/dΩ [mb/srad] 85 Se (α, n) ⁸⁸Kr W H Dickhoff et al. Rate Batio θ [deg] 10⁻¹ **Angular distributions for** 132 Sn(d,p) 133 Sn (Ed = 9.46 MeV)

Uncertainty of 85 Se(α ,n) reaction rate

Temperature (GK)

Scattering angle (degrees)

Fusion Reaction Mechanism related to Stellar Evolution

Total fusion excitation function for ⁸B + ⁴⁰Ar.

Reduced total reaction cross sections

¹⁶O + ⁴⁰Ar fusion cross sections??

Texas Active Target (TexAT) design

Ionization beam profile for a typical fusion event

- √ 20Ne+20Ne, 20Ne+16O fusion cross sections to revisit the result of D. Shapira PRC (1983)
- ✓ Fusion cross sections with halo nucleus (⁶He,⁷Li, ⁷Be, ⁹Be)

Targets and Detectors for Nuclear Astrophysics Studies at CENS

✓ Solid Targets: CH₂, CD₂

✓ Gas Targets: H₂, D₂, ⁴He, ³He, N₂

Conceptual Design of STARK chamber

Conceptual Design of STARK

Year 2022!!

Conceptual Design of STARK Jr. and ASGARD

Portable HPGe detectors

Summary

- Many astrophysical observables can be explained by various nuclosynthesis models.
- Nuclear Physics inputs play an important role in nucleosynthesis calculation results.
- Recent sensitivity studies show large uncertainties on the nuclear properties of unstable nuclei.
- → Experimental measurements with rare isotopes are very critical to reduce them.
- The ¹⁴O(a,p)¹⁷F reaction is one of the most important reactions in the X-ray burst model and a key reaction determining alternate break-out path from HCNO cycle.
- Previous indirect measurements show large disagreements.
- ⇒ Direct measurement of $^{14}O(a,p)^{17}F$ cross sections using the TexAT will be performed at CRIB/RIKEN, Japan.
- CENS AT-TPC, AToM-X, is under development for direct measurements of many astrophysically-important (a,p) reactions, elastic scatterings and fusion cross sections.
- → 17 F(a,p) 20 Ne, 18 Ne(a,p) 21 Na, 22 Mg(a,p) 25 Al, 30 S(a,p) 33 Cl and more...

New Trends in Nuclear Physics Detectors 2021

Thank you!

CENS, IBS:

K. I. Hahn, S. Ahn, D. Kim, J.W. Hwang, B. Moon, C.Y. Park, S.H. Bae, and S.M. Cha

Sungkyunkwan Univ.:

K.Y. Chae, M.J. Kim, C.H. Kim, and S.H. Kim

Texas A&M Univ.:

G. V. Rogachev, E. Koshchiy, J. Bishop, and C. Parker

CEA, Saclay, France:

L. Pollacco

and YOU in the future!

