A.Kashchuk ${ }^{\text {a }}$ (anatoli.kachtchouk@cern.ch), V.Bayev ${ }^{\text {b }}$, O.Levitskaya ${ }^{\text {a }}$, S.Movchan ${ }^{\text {c }}$
${ }^{\text {a }}$ PNPI, Gatchina; ${ }^{\text {b }}$ IPE NASB, Minsk; ${ }^{\text {c JINR, Dubna }}$

NTNPD2021(25-27 October 2021)
M.Shafranov, T.Topuria (2001) [1]

Warsaw, Poland

PWEM_d30s100h100g100; -100/0/+350/+400V Field created with COMSOL [3]
(2) Parallel wires PWEM without multiplication in induction gap at $\mathrm{g}=0.1-1 \mathrm{~mm}$ with DLC readout anode

$\mathrm{E}(\mathrm{kV} / \mathrm{cm})$

4
Crossing wires CWEM
without multiplication in induction gap with direct XY-readout from wires at low X/X0~0.02\%

Gas Gain parameterization
$\mathbf{G}=\mathbf{2}^{\left(\mathrm{V}-V_{\text {min }}\right) / \Delta \mathrm{V}}=\mathbf{2}^{\mathbf{n}}$
where Vmin corresponds to Emin, at which multiplication starts (to be measured, Vmin $\approx 188 \mathrm{~V}$ in our case) $\Delta \mathrm{V}=26 \mathrm{~V}$ - corresponds to average energy, at which electon-ion pair is created: in $\mathrm{Ar} \sim 15 \mathrm{eV}$ ionization, $\sim 11 \mathrm{eV}$ exitation n - number of equipotentials obtained with COMSOL

For the same geometry ($\mathrm{d}, \mathrm{s}, \mathrm{h}$) one can obtain the gas gain in rather wide range for various applications optimized by changing D, g and Voltage, e.g. G~10 for thermal and cold neutrons, $G \sim 10^{6}$ for single photons, and $\mathrm{G}=(5-10) \cdot 10^{3}$ for X -Rays and MIPs

[^0]M.Shafranov,T.Topuria // Particles and Nuclei, Letters. 2001. №1 p.105.
O. Bunemann, et al. DESIGN OF GRID IONIZATION CHAMBERS T.E., Harvey J. A. II Canad J Res. A. 1949 V27. P 191.

Acknowledgements
https://www.comsol.ru/comsol-multiphysics

[^0]: References
 2001. №1 p. 105.

