

LHEP / JINR May 2017

Concept & Performance

Fast interaction trigger by Vertex FFD_E - **FFD**_w (<u>on-line processing of FFD pulses</u>) Requirement: good timing signals from modules of both sub-detectors

Start signal production for TOF (<u>off-line analysis of FFD pulses</u> in TDC72VHL) Requirement: a single pulse with good timing from all FFD channels

Au + Au collisions

The delay of charged particle arrival in FFD

Energy spectra of the photons emitted into the FFD

5

η

Photons from IP in whole FFD

Vertex – Trigger detectors

- For all energy range of NICA, the FFD provides the efficiency of vertex trigger of ~100% for Au + Au collisions in an interval of the impact parameter of $0 \le b < 11$ fm.
- For collisions of light-mass nuclei, p + Au, and p + p, two large area scintillation detectors
 BBC (Beam-Beam Counters) will be used for effective triggering the collisions.

Collisions	Vertex-trigger detectors	Efficiency
Au + Au	FFD_E , FFD_W	good
p + Au	FFD & BBC	Simulation in progress
p + p	BBC	Simulation in progress

Vertex-trigger detectors for different type of collisions.

We expect that BBC will be the contribution to MPD experiment from Mexican group. Preparation of the agreement in progress.

Time resolution of start signal

FFD modules

Module design

Module elements (FFE plate with HV divider are not shown): 1 – the plastic box, 2 – the MCP-PMT, 3 – the quartz radiator, 4 – the rubber 1, 5 – the plastic frame of the radiator, 6 – the rubber 2, 7 – the lead converter, 8 – the rubber 3.

A photo of plastic box, FFE plate with HV divider, XP85012/A1, quartz radiator, plastic frame of the radiator

FFD modules

	units	Status	Plan
Photodetectors XP85012/A1	40	40 +7 (reserve) units	
Quarts radiators	160	160 units	
Lead converters	160	10- mm plate	Production in 2018
FEE	40	Final design	Production in 2017-2018
Housings and mechanical elements	40	Final design	Production in 2017-2018
Connectors	SMA , HV, HDMI 200+40+40		Purchase in 2017

2018 – 2019 Module production and tests

Test measurements with prototypes

- tests in laboratory with LED and cosmic rays
- tests with deuteron beam of Nuclotron
- tests in magnetic field of BM@N magnet up to B = 0.9 T.

Module prototype

FFD modules on the beam line of MPD-test area.

Results of the test measurements

Realistic chain of cables and electronics.

Tests in magnetic field of BM@N magnet

Light pulses of laser LED Readout by digitizer E.B. DRS4 V5

The FFD electronics

	Units Channels	Status 2017	Prototypes & Tests	Production
Sub-detector units	2 80 +20 /unit	prototyping	2018 - 2019	2019 - 2020
LV power supplies for FEE	2 60 /unit	prototyping	2018 - 2019	2019 - 2020
HV power supplies for XP85012	2 24 /unit	Study for purchase		Purchase in 2018
Readout TDC72VHL	4			2019 - 2020
Local readout CAEN N6742	6			Purchase in 2018-2019
Vertex-trigger unit	1	prototyping	2018 - 2019	2019 - 2020

FFD sub-systems

Sub-system	Status 2017	2018	2019	2020
Detector control system	Prototyping	Prototypes	Prototypes Production	Production &Tests
Laser calibration system	PiLas laser unit Laser head with optics Quartz fiber bundles Reference photodetector	Design, purchase of optical cables & components	Production	Tests
FFD sub-detector mechanical construction	Design	Design	Production	Production
Cable system	Types of cables, preparation for purchase	Purchase	Purchase	

FFD will be ready for installation in the beginning of 2021

