Study of D⁰ reconstruction in the CBM experiment

G.Kozlov

Joint Institute for Nuclear Research

Dubna, 2014

Motivation

One of the major experimental challenges of the CBM experiment is to trigger on the displaced vertex of the D-meson or Λ_c decay via hadronic modes in the environment of a heavy ion collision.

Problems:

- Short lifetime of the open charm;
- high density of the beam.

We examined the influence of the following factors on the quality of D⁰ reconstruction :

Clustering algorithm;Delta electrons.

Outline

- Interaction Rate problem;
- Clustering algorithms;
- D⁰ + deltas at 10-100 kHz Interaction Rate;
- D⁰ + UrQMD + deltas at 10-50 kHz
 Interaction Rate;
- Conclusions

Detector configuration

Variant of the MVD detector, which we consider, has the following configuration:

- Geometry version: v10b;
- Detecting stations: 4 MVD MAPS;
- Pad size: 18,4x18,4 μm MIMOSA26;
- Readout time:
 30 μs.

Amount of clusters from delta electrons in all MAPS of detector

Delta Electrons 🛛 — UrQMD data

Clustering algorithm with charges Charges Clusters

9

6

48+0

€6

()

()

2

3

2

5

8

5

4

7

5

3

6

 \mathbf{O}

Every pad with local maximum of charge creates a single cluster. Every cluster has only one local maximum of charge.

Algorithm:

- each pad with a non-zero charge is considered as a separate cluster;
- if the pad is not a local maximum, then it is joined the neighbor with the largest charge, else it is a separate object;
- algorithm is executed until all pads are added to clusters.

Clustering algorithm without charges

Algorithm adds the object to the cluster, if this object is close to one of the objects already included in this cluster.

Pads were merged on the basis of their neighborhood.

Advantages:

- high calculation speed;
- does not require information about the charges.

<u>Disadvantages:</u>

• no separation of overlapping clusters.

Accuracy of hits finding

Efficiency of MVD clustering

Efficiency (%) --- With charges --- No charges + Threshold --- No charges

Interaction Rate (kHz)

Reconstructed tracks

10 kHz

30 kHz

100 kHz

D^o Z vertex resolution – D^o+deltas

11

0 kHz

Events: 10000 Entries: 2058 Sigma: 42,07±1,09 µm Tracking time: 0,003 s/ev

Events: 10000 Entries: 2041 Sigma: 44,61 ±1,24 µm Tracking time: 0,110 s/ev

A

200

 z_{mc} - z_{reco} (μm)

400

10 kHz

z vertex geo res

RMS

Constant

Mean

Sigma

25

20

15

10

-400

2024

66.82

 15.4 ± 0.6

-3.935 ± 1.069

41.85 ± 1.24

Events: 10000 Entries: 2016 Sigma: 42,07±1,23 μm Tracking time: 0,255 s/ev

-200

A

Events: 10000 Entries: 2024 Sigma: 41,85±1,19 µm Tracking time: 0,760 s/ev

Events: 1000 Entries: 205 Sigma: 42,19±3,44 µm Tracking time: 3,700 s/ev

Reconstructed tracks with UrQMD

D⁰ Z vertex resolution – D⁰+deltas+UrQMD

0 kHz

30 kHz

D⁰ invariant mass resolution – D⁰+deltas+UrQMD

D⁰ Z vertex resolution – D⁰+deltas+UrQMD **Clustering with charges**

30 kHz

0 kHz

Entries 51

10

-400

50 kHz

Events: 1000 Entries: 190 Sigma: 36,04 ±3,72 μm

0

-200

All results

		0 kHz	10 kHz	30 kHz	50 kHz	100 kHz
Dº + delta	Sigma(µm)	42,07 ±1,09	44,61 ±1,24	43,71 ±1,23	41,85 ±1,19	42,19 ±3,44
	Time (s/ev)	0,003	0,110	0,255	0,760	3,700
D ⁰ + UrQMD + delta	Sigma(µm)	38,2 ±3,20	42,79 ±3,62	39,47 ±4,00	47,01 ±3,77	-
	Time (s/ev)	0,211	0,346	0,879	1,722	-
D ⁰ + UrQMD + delta with charges	Sigma(µm)	36,04 ±3,72	37,15 ±3,27	37,83 ±3,02	36,36 ±2,49	-
	Time (s/ev)	0,227	0,371	0,961	1,935	-

Summary

- Using charge provides a slight increase in efficiency and accuracy of clustering and tracking. Absence of charges does not lead to loss of important information.
- Interaction rate up to 100 kHz does not lead to a significant drop in the efficiency of D⁰ determining:
 - Graphs of the invariant mass remain practically unchanged;
 - Number of found D⁰ and Z vertex resolution remains at one level;
 - Z vertex reconstruction graphs have a similar shape.
- Increasing of the interaction rate leads to a decrease in speed of events reconstruction.

Thank you for your attention!