Update on photon conversion and dielectron studies in BiBi@9.2

V. Riabov

Dielectrons - productions

New Monte Carlo production

- Request13: *PWG4 dielectrons*, *15M minbias BiBi@9.2*
- Geant-4 based simulation
- Same as Request 11 but with a different simulation of dE/dx in the TPC
 - ✓ new dE/dx
 - ✓ new TPC digitizer (MpdTpcDigitizerAZlt vs. MpdTpcDigitizerAZ)
- Output data:
 - ✓ DSTs:

/eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp05-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp05-21-500ev

✓ MiniDSTs:

/eos/nica/mpd/sim/data/MiniDst/dst-BiBi-09.2GeV-mp05-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp05-21-500ev/eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp02-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp02-21-500ev/

✓ 30,000 DST files

Efficiency and purity

- Selected tracks:
 - \checkmark hits > 39
 - ✓ $|\eta| < 1$
 - ✓ $|DCA_x,y,z| \le 2.5 \sigma$

eID selections:

- 2σ matching to TOF
- $1-2\sigma$ TPC-eID
- ✓ 2σ TOF-eID

Request 11

- Similar reconstruction efficiencies with different electron selection and ID cuts
- Observe problems with electron purity for Request13

Closer look at dE/dx distributions + TOF e-ID

- Selected tracks:
 - ✓ hits > 39
 - ✓ |η| < 1
 ✓ |DCA_x,y,z| < 2.5 σ
 - $\checkmark p_{\rm T} = 1 ~{\rm GeV/c}$

eID selections: ✓ 2σ matching to TOF ✓ 2σ TOF-eID

Request 11

Request 13

- The problem of electron purity is traced to long non-Gaussian tails of dE/dx distributions for hadrons in Request 13, electrons can not be distinguished from the pion tail
- Kaon and proton contributions are comparable after TOF e-PID

Comparison to dE/dx from STAR - I

- STAR dE/dx distribution was provided by Chi Yang (for internal checks only) :
 - ✓ minbias AuAu@54 GeV
 - ✓ basic event and track quality cuts ($|\eta| < 1.0$, |DCA| < 1 cm), $p_T \sim 1$ GeV/c
- For comparison:
 - \checkmark dE/dx of STAR is scaled to reproduce the pion peak (arbitrary calibration)
 - ✓ MPD proton peak is scaled to reproduce the second peak (different K/ π and p/ π ratios)

Comparison to dE/dx from STAR - II

- Mean values of dE/dx are better reproduced in Request 13.
- Tails of dE/dx distributions get overestimated in Request 13 → the MPD total distribution is above that of STAR at dE/dx > 2 keV/cm even though STAR additionally includes signals from deuterons:
 - \rightarrow new dE/dx (used in Request 13) are better tuned to STAR data (relative peak position)
 - \rightarrow new TPC digitizer (used in Request 13) results in excessive tails of dE/dx distributions

Conclusions

- The latest TPC digitizer does not quite reproduce the expected shape of dE/dx distributions for hadrons
- There is no production with new dE/dx and old TPC digitizer
- So far, we stick to Request 11 production for dielectrons
- The whole Request 11 production was retrieved from the tape:

/eos/nica/mpd/sim/data/exp/dst-BiBi-09.2GeV-mp02-21-500ev/BiBi/09.2GeV-mb/UrQMD/BiBi-09.2GeV-mp02-21-500ev

30,000 files

15M minbias BiBi@9.2 events

Dielectrons - background (erratum)

Pair cuts, loosening cuts for a partner

- Conversion rejection cuts are applied as described in the previous presentation
- Dalitz rejection, $Mconv = 0.1 \text{ GeV/c}^2$:
 - \checkmark e-tracks are paired, if a pair invariant mass $M_{inv} \leq M_{cut}$ then both e-tracks are rejected as Dalitz candidates
- Varied the pair selection cuts:
 - \checkmark tight selection cuts for a primary electron in the pair (same cuts as for e+e- continuum)
 - \checkmark loosen selection cuts for a partner in search for conversion/Dalitz candidates

• By loosening the cuts for a partner (to some limit) we increase efficiency of background rejection

Pair cuts, limiting acceptance for a primary e

- Idea was to limit acceptance for a primary electron → easier to find a reconstructed conversion or Dalitz partner for rejection
- Last time presented wrong plots and made wrong conclusions (the calculations were correct)

- By limiting acceptance for a primary electron, we indeed improve the S/B ratio but loose statistical significance of the signals
- Is it just effect of lower multiplicity ???

Pair cuts, multiplicity ?

• Compared default variant with the one when every second track is rejected (random selection)

• Lower multiplicity does not improve S/B and signal significance

Conclusions

- Loosening the partner selection in electron pair cuts helps to improve S/B and signal significance
- Limiting acceptance for a primary electron helps to improve S/B BUT in the expense of smaller signal significance
- Optimization of cuts is ongoing. S/B of ~ 0.1 with a reasonable penalty for signal significance can be reached

Conversion

Photon efficiency and purity

 $Mee < 0.022 + 0.017*p_T [GeV]$

ee-pair plane orientation wrt B: Ψ Pair < 0.1 rad

- Studied with MpdRoot for Stage-1 detector
- MpdParticle to build secondary vertices, cuts optimized to maximize signal significance
- Typical cuts on electrons:
 - ✓ $|\eta| < 1$, $p_T > 50$ MeV/c, ≥ 20 hits in TPC, $\pm 4\sigma$ electron PID selections in the TPC/TOF
- Typical cuts on pairs:
 - ✓ small DCA ($\chi 2 < 10$)
 - ✓ vertex R > 10 cm
 - ✓ direction to vertex: θ ≤ exp(-2.777-2.798*p_T) + 0.0175

• Photon reconstruction efficiency of $\leq 2\%$ with purity > 95%

Neutral pions

• 10M minimum bias AuAu@11 URQMD events

- Due to high photon reconstruction purity the mixed-event background subtraction is not needed
- Pion signal is clearly visible in a wide p_T range → day-1 measurements
- First measurements of η would require a factor of ~ 10 larger data sample

Dedicated photon converter - I

- A dedicated conversion layer under investigation:
 - \checkmark cylindrical copper pipe with radius of 15 cm
 - ✓ radiation length: 5% and 10% (0.7 and 1.4 mm)
- Advantages:
 - ✓ photon reconstruction efficiency can be increased by a factor ~3, neutral mesons ~ 10
 - \checkmark minimization of systematic uncertainties due to well known material budget
- Disadvantages:
 - \checkmark ruins single electron and dielectron measurements
 - ✓ deteriorates hadron measurements ???

Dedicated photon converter - II

• DCAr and DCAz distributions:

• Momentum resolution:

- Marginal decrease in the reconstruction quality of charged particles
- The decrease is noticeable only at low $p_T < 0.5 \text{ GeV/c}$

Photon conversion in Stage-2

ITS in Stage-2:

٠

- ✓ five layers of Monolitic Active Pixel Sensors
- ✓ ~ 0.4% X_0 in current design
- Photon reconstruction efficiency slightly improves compared to Stage-1 setup
- Photon reconstruction efficiency slightly improves compared to Stage-1 setup

Probing material budget

Real detector geometry

- Reconstructed ee-pairs can be used for detector alignment and estimation of the material budget
- Radiation length of the converter is known with high precision and can be used as a reference
- Spatial resolution needs to be improved

Reconstructed conversion centers

15

20

25

30

35

40

r (cm)

Conclusions

- Photon conversion method is a powerful tool to measure photons and neutral mesons
- Feasibility studies on the dedicated converter and Stage 2 setup show promising results
- Further developments: conversion for precise detector alignment and for estimation of the detector material budget

BACKUP

Closer look at dE/dx distributions

- Selected tracks:
 - \checkmark hits > 39
 - ✓ |η| < 1</p>
 - ✓ $|DCA_x,y,z| \le 2.5 \sigma$
 - ✓ $p_T = 1 \text{ GeV/c}$

- Non-Gaussian distributions with new dE/dx results in much worse separation of electrons from pions and kaons
- Non-Gaussian tails contribute only very little to the width of dE/dx parameterizations
 → the parameterizations remain to be similar