One-loop divergences in 4D, $\mathcal{N}=2$ harmonic superfield sigma-model XVII DIAS-TH Winter School "Supersymmetry and Integrability"

Alexandra Budekhina

Tomsk State Pedagogical University

Based on: I.L. Buchbinder, A.S. Budekhina, B.S. Merzlikin, Eur. Phys. J. C.

Motivation

- Nonlinear sigma-models is an interesting object of study due to their remarkable properties, namely because of the intimate connection with the differential geometry.
- ♠ The divergences of the effective action in four-dimensional N=1 supersymmetric sigma-models are studied in work of Spence in the case of vanishing (anti-)chiral potentials and in the work made by (A.T. Banin , I.L. Buchbinder , N.G. Pletnev, 2006) in the general case in harmonic superspace.
- Some assumptions about a structure of the possible one-loop divergences in N=2 sigma-models on the base of N=1 divergences were considered in the work of (Spence,1985).
- The harmonic superspace was originally developed by (A.Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, 1985)
- There are two types of hypermultiplets in harmonic superspace, the q-hypermultiplet and ω-hypermultiplet (A.Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, 2001).
- The derivation of the one-loop divergent contributions to the effective action of N=2 supersymmetric sigma model in manifestly covariant and N=2 supersymmetric manner was not held directly in terms of N=2 superfields.

Plan

- Description of the model
- Background quantum splitting
- One loop quantum correction
- 4 Algebra of covariant derivatives
- One loop divergences
- Special cases
- The component structure of divergences
- Summary

The central basis coordinates of the $\mathcal{N}=2$ harmonic superspace (A.Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, 2001)

$$(z,u) = (x^M, \theta_i^{\alpha}, \bar{\theta}_{\dot{\alpha}}^i, u^{\pm i}), \qquad M = 0,...,3, \quad \alpha = 1,2 \quad i = 1,2.$$
 (1)

The analytic harmonic superspace coordinates

$$(\zeta, u) = (x_{\mathcal{A}}^{M}, \theta_{\alpha}^{+}, \bar{\theta}_{\dot{\alpha}}^{+}, u^{\pm i}), \qquad x_{\mathcal{A}}^{M} = x^{M} - 2i\theta^{(i}\sigma^{M}\bar{\theta}^{j)}u_{i}^{+}u_{j}^{-}, \quad \theta^{+\alpha} = u_{i}^{+}\theta^{\alpha i}. \tag{2}$$

The classical action for the model

$$S[\omega] = \int d\zeta^{(-4)} \left(-\frac{1}{2} g_{ab}(\omega) D^{++} \omega^a D^{++} \omega^b + L_a^{++}(\omega) D^{++} \omega^a + L^{(+4)}(\omega) \right), \tag{3}$$

where a=1,..,n. The target space metric g_{ab} , and L_a^{++} and $L^{(+4)}$ are the arbitrary analytic functions of the ω^a -superfields.

This action is invariant under reparameterizations transformations

$$\omega^a \to \omega^a + \lambda^a(\omega, u) \,. \tag{4}$$

in the assumption that superfields $g_{ab},\,L_a^{++}$ and $L^{(+4)}$ transform under (4) as a tensor of the corresponding rank.

Background-quantum splitting

Due to the manifestly covariant background field formalism we introduce the analytic superfield $ho^a(s)$ that satisfies the harmonic superspace geodesic equation

$$\frac{d^2 \rho^a(s)}{ds^2} + \Gamma^a{}_{bc}(\rho) \frac{d\rho^b(s)}{ds} \frac{d\rho^c(s)}{ds} = 0, \tag{5}$$

with the conditions

$$\rho^{a}(0) = \Omega^{a}, \quad \rho^{a}(1) = \Omega^{a} + \pi^{a}, \quad \frac{d}{\rho^{a}} ds \Big|_{s=0} = \xi^{a}.$$
(6)

The solution to the equation (5) reads

$$\rho^{a}(s) = \Omega^{a} + \sum_{n=1}^{\infty} \frac{s^{n}}{n!} \rho^{a}_{(n)}.$$
 (7)

The decomposition of the classical action (3) under (7)

$$S[\rho] = S[\Omega] + \sum_{n=1}^{\infty} \frac{1}{n!} \frac{d^n S[\rho]}{ds^n} \Big|_{s=0} = S[\Omega] + S_1 + S_2 + \dots$$
 (8)

will be manifestly covariant.

Background-quantum splitting

The explicit expression for S_2 is written as follows

$$S_{2} = \frac{1}{2} \int d\zeta^{-4} \xi^{a} \Big(g_{cd} (\nabla^{++})_{a}^{c} (\nabla^{++})_{b}^{d} - R^{d}_{abc} D^{++} \Omega^{c} D^{++} \Omega_{d} + \nabla_{(a} L_{c}^{++} (\nabla^{++})_{b}^{c}) + \nabla_{a} \nabla_{b} L_{c}^{++} D^{++} \Omega^{c} + L_{d}^{++} R^{d}_{abc} D^{++} \Omega^{c} + \nabla_{a} \nabla_{b} L^{(+4)} \Big) \xi^{b},$$

$$(9)$$

where we have introduced the harmonic covariant derivative

$$(\nabla^{++}\xi)^a = (\nabla^{++})^a{}_b\xi^b = D^{++}\xi^a + \Gamma^a{}_{bc}(\Omega)D^{++}\Omega^c\xi^b, \tag{10}$$

and $abla_a$ is a covariant derivative along the curve $ho^a(s)$ in the target space.

One loop quantum correction

The one-loop quantum correction $\Gamma^{(1)}$ to the classical action (3)

$$\Gamma^{(1)}[\Omega] = \frac{i}{2} \operatorname{Tr}_{(4,0)} \ln \left((\nabla^{++})^2 + (\nabla L^{++}) \nabla^{++} + X^{(+4)} \right), \tag{11}$$

where the operator $(\nabla L^{++})\nabla^{++}$ means $\nabla_{(a}L_c^{++}(\nabla^{++})^c{}_{b)}$. The expression $X^{(+4)}$ is written as follows

$$X_{ab}^{(+4)} = -R^{d}{}_{abc}D^{++}\Omega^{c}D^{++}\Omega_{d} + \nabla_{a}\nabla_{b}L_{c}^{++}D^{++}\Omega^{c} + L_{d}^{++}R^{d}{}_{abc}D^{++}\Omega^{c} + \nabla_{a}\nabla_{b}L^{(+4)}.$$

$$(12)$$

We introduce the new covariant derivative $\mathcal{D}^{++}=D^{++}+\mathcal{V}^{++}=\nabla^{++}+\tilde{\Gamma}^{++}$ in terms of new analytic connection $\mathcal{V}^{++}=\Gamma^{++}+\tilde{\Gamma}^{++}$. Here $(\Gamma^{++})^a{}_b=\Gamma^a{}_{bc}(\Omega)D^{++}\Omega^c$ and $(\tilde{\Gamma}^{++})^a{}_b=g^{ac}\nabla_c L_b^{++}$. Then (11) reads

$$\Gamma^{(1)} = \frac{i}{2} \operatorname{Tr}_{(4,0)} \ln \left((\mathcal{D}^{++})^2 + \tilde{X}^{(+4)} \right), \tag{13}$$

$$\tilde{X}_{ab}^{(+4)} = -R^{d}{}_{abc}D^{++}\Omega^{c}D^{++}\Omega_{d} + L^{++}_{d}R^{d}{}_{abc}D^{++}\Omega^{c}$$

$$-^{c}L^{++}_{a}{}_{c}L^{++}_{b} - (\nabla^{++})^{c}{}_{ac}L^{++}_{b} + \nabla_{a}\nabla_{b}L^{++}_{c}D^{++}\Omega^{c} + \nabla_{a}\nabla_{b}L^{(+4)}.$$
 (14)

Algebra of covariant derivatives

The zero curvature condition

$$[(\mathcal{D}^{++})_c^a, (\mathcal{D}^{--})_b^c] = \delta_b^a D_0.$$
 (15)

Assuming $\mathcal{D}^{--} = D^{--} + \mathcal{V}^{--}$ we obtain

$$\mathcal{V}^{--} = \sum_{n=1}^{\infty} (-1)^n \int du_1 \dots du_n \frac{\mathcal{V}_1^{++} \mathcal{V}_2^{++} \dots \mathcal{V}_n^{++}}{(u^+ u_1^+) \dots (u_n^+ u_1^+)}.$$
 (16)

Algebra of covariant derivatives like in $\mathcal{N}=2$ SYM theory (A.Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, 2001)

$$\begin{aligned}
\{D_{\alpha}^{+}, \mathcal{D}_{\beta}^{-}\} &= 2\varepsilon_{\alpha\beta}\bar{W}, & \{\bar{D}_{\dot{\alpha}}^{+}, \bar{\mathcal{D}}_{\dot{\beta}}^{-}\} &= 2\varepsilon_{\dot{\alpha}\dot{\beta}}\mathcal{W}, \\
\{\bar{D}_{\dot{\alpha}}^{+}, \mathcal{D}_{\alpha}^{-}\} &= -\{D_{\alpha}^{+}, \bar{\mathcal{D}}_{\dot{\alpha}}^{-}\} &= 2i\mathcal{D}_{\alpha\dot{\alpha}}, \\
[D_{\alpha}^{+}, \mathcal{D}_{\beta\dot{\beta}}] &= \bar{D}_{\dot{\beta}}^{+}\varepsilon_{\alpha\beta}\bar{W}, & [\mathcal{D}_{\alpha}^{-}, \mathcal{D}_{\beta\dot{\beta}}] &= \bar{\mathcal{D}}_{\dot{\beta}}^{-}\varepsilon_{\alpha\beta}\bar{W}, \\
[\bar{\mathcal{D}}_{\dot{\alpha}}^{+}, \nabla_{\beta\dot{\beta}}] &= D_{\beta}^{+}\varepsilon_{\dot{\alpha}\dot{\beta}}\mathcal{W}, & [\bar{\mathcal{D}}_{\dot{\alpha}}^{-}, \mathcal{D}_{\beta\dot{\beta}}] &= \mathcal{D}_{\beta}^{-}\varepsilon_{\dot{\alpha}\dot{\beta}}\mathcal{W} \\
[\mathcal{D}^{++}, \bar{\mathcal{D}}_{\dot{\alpha}}^{-}] &= \bar{\mathcal{D}}_{\dot{\alpha}}^{+}, & [\mathcal{D}^{--}, \mathcal{D}_{\alpha}^{+}] &= \mathcal{D}_{\alpha}^{-}. & (17)
\end{aligned}$$

Here we have denoted

$$\mathcal{D}_{\alpha}^{-} = D_{\alpha}^{-} - D_{\alpha}^{+} \mathcal{V}^{--}, \qquad \mathcal{D}_{\alpha \dot{\alpha}} = \partial_{\alpha \dot{\alpha}} - \frac{i}{2} D_{\alpha}^{+} \bar{D}_{\dot{\alpha}}^{+} \mathcal{V}^{--},$$

$$\bar{\mathcal{W}} = (D^{+})^{2} \mathcal{V}^{--}, \qquad \mathcal{W} = (\bar{D}^{+})^{2} \mathcal{V}^{--}. \tag{18}$$

The one-loop divergences

To calculate the effective action, we represent it in the form

$$\Gamma^{(1)}[\Omega] = i \operatorname{Tr}_{(2,2)} \ln \mathcal{D}^{++} + \frac{i}{2} \operatorname{Tr}_{(4,0)} \ln \left(\mathbf{1} + G^{(0,0)} \tilde{X}^{+4} \right), \tag{19}$$

where the Green function $G^{(0,0)}$ satisfies the equation

$$(\mathcal{D}_1^{++})^2 G^{(0,0)}(1,2) = \delta_{\mathcal{A}}^{(4,0)}(1,2). \tag{20}$$

Explicit solution of this equation has the form (A.Galperin, E. Ivanov, V. Ogievetsky, E. Sokatchev, Harmonic Superspace, 2001)

$$G^{(0,0)}(1,2) = -\frac{1}{\widehat{\Box}_1} (D_1^+)^4 (D_2^+)^4 \delta^{12} (z_1 - z_2) \frac{(u_1^- u_2^-)}{(u_1^+ u_2^+)^3}, \tag{21}$$

where $\delta^{12}(z_1-z_2)$ is a full $\mathcal{N}=2$ superspace delta-function and the analytic covariant d'Alembertian

$$\widehat{\Box} = \frac{1}{2} (D^{+})^{4} (\mathcal{D}^{--})^{2}
= \mathcal{D}_{M} \mathcal{D}^{M} - \frac{1}{4} (D^{+})^{2} \mathcal{W} \mathcal{D}^{--} - \frac{1}{2} D_{\alpha}^{+} \mathcal{W} \mathcal{D}^{-\alpha} - \frac{1}{2} \bar{D}_{\dot{\alpha}}^{+} \bar{\mathcal{W}} \bar{\mathcal{D}}^{-\dot{\alpha}}
+ \frac{1}{8} \mathcal{D}_{\alpha}^{-} D^{+\alpha} \mathcal{W} - \frac{1}{2} \mathcal{W} \bar{\mathcal{W}}.$$
(22)

The one-loop divergences

We use the proper-time representation for the operator $\stackrel{\frown}{\Box}{}^{-1}$ in the Green function (21)

$$\frac{1}{\widehat{\square}_1} = \int_0^\infty d(is)(is\mu^2)^{\frac{\varepsilon}{2}} e^{-is\widehat{\square}_1}$$
 (23)

The divergent contribution of the effective action (19)

$$\Gamma_{\text{div}}^{(1)} = \frac{1}{2(4\pi)^2 \varepsilon} \operatorname{tr} \int d^8 z \, \mathcal{W}^2
- \frac{1}{4(4\pi)^2 \varepsilon} \int d^{12} z \, du_1 du_2 \frac{(u_1^- u_2^-)^2}{(u_1^+ u_2^+)^2} \, \tilde{X}^{(+4)ab}(1) \, \tilde{X}_{ba}^{(+4)}(2).$$
(24)

Special cases

Assumption $L_a^{++} = 0$ and $L^{(+4)} = 0$. The divergent contribution

$$\Gamma_{R, \text{ div}}^{(1)}[\Omega] = \frac{1}{2(4\pi)^2 \varepsilon} \operatorname{tr} \int d^8 z \, W^2 - \frac{1}{4(4\pi)^2 \varepsilon} \int d^{12} z \, du_1 du_2 \, \frac{(u_1^- u_2^-)^2}{(u_1^+ u_2^+)^2} R^{cab}_{\ d}(1) R^e_{\ bak}(2) \times D^{++} \Omega^d(1) D^{++} \Omega_c(1) D^{++} \Omega^k(2) D^{++} \Omega_c(2). \tag{25}$$

The superfield connection \mathcal{V}^{++} coincides with the Levi-Civita analytic connection $(\Gamma^{++})_t^a = \Gamma^a{}_{bc}(\Omega)D^{++}\Omega^c$.

Assumption the background metric, $g_{ab}(\Omega)=h_{ab}$, does not depend on the superfield Ω and superspace point z. The divergent contribution

$$\Gamma_{L, \text{div}}^{(1)} = \frac{1}{2(4\pi)^2 \varepsilon} \operatorname{tr} \int d^8 z \, \tilde{W}^2 - \frac{1}{4(4\pi)^2 \varepsilon} \int d^{12} z \, du_1 du_2 \frac{(u_1^- u_2^-)^2}{(u_1^+ u_2^+)^2} L_{ab}^{(+4)}(1) L^{(+4)ba}(2), \tag{26}$$

where

$$\nabla_{ab}^{++} = h_{ab}D^{++} + \tilde{\Gamma}_{ab}^{++},
L_{ab}^{(+4)} = \partial_{a}\partial_{b}L^{(+4)} + \partial_{a}\partial_{b}L_{c}^{++}D^{++}\Omega^{c} - D^{++}\tilde{\Gamma}_{ba}^{++} + (\tilde{\Gamma}^{++})_{ab}^{2}.$$
(27)

The component structure of divergences

The component structure of divergent contribution in bosonic sector

$$\Gamma_{\rm div}^{(1)}[\omega] = -\frac{1}{128\pi^2 \varepsilon} \int d^4x \, R^{cab}{}_d R^e{}_{bak} \, (\nabla_{\alpha\dot{\alpha}}\omega)^d \, (\nabla^{\alpha\dot{\alpha}}\omega)_c (\nabla_{\beta\dot{\beta}}\omega)^k (\nabla^{\beta\dot{\beta}}\omega)_e + \dots, \tag{28}$$

Summary

- The manifestly covariant approach for studying the quantum structure of the general N = 2 supersymmetric sigma-model in four dimensions was developed.
- Θ 4D,N = 2 supersymmetric sigma-model (3), is formulated in N = 2 harmonic superspace in terms of analytic omega-hypermultiplet superfields.
- $oldsymbol{\Theta}$ The one-loop effective action for such a model is constructed in the framework of the manifestly covariant and manifestly N = 2 supersymmetric background-quantum splitting in N = 2 harmonic superspace .
- ullet One loop divergent contributions to the effective action was constructed for arbitrary background hypermultiplet Ω with the use of proper-time technique.
- The one-loop divergences in two special cases were calculated.

Thank you for your attention!